某公司春節(jié)聯(lián)歡會中設一抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球.活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎;獎金30元,三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金.
(1)員工甲抽獎一次所得獎金的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數(shù)的方差是多少?
分析:(1)由題意知甲抽一次獎,基本事件總數(shù)是C103,獎金的可能取值是0,30,60,240,結(jié)合變量對應的事件寫出變量對應的概率,寫出分布列和期望值.
(2)由(1)可得乙一次抽獎中獎的概率,和四次抽獎是相互獨立的,得到中獎的次數(shù)符合二項分布,根據(jù)二項分布的方差公式寫出結(jié)果.
解答:解:(1)由題意知甲抽一次獎,基本事件總數(shù)是C103=120,
獎金的可能取值是0,30,60,240,
∴一等獎的概率P(ξ=240)=
1
120
,
P(ξ=60)=
8
120
=
1
15

P(ξ=30)=
7×2+6×7
120
=
7
15

P(ξ=0)=1-
1
120
-
1
15
-
7
15
=
11
24

∴變量的分布列是ξ
ξ 0 30 60 240
P  
11
24
 
7
15
 
1
15
 
1
120
∴E ξ=30×
7
15
+60×
1
15
+240×
1
120
=20
(2)由(1)可得乙一次抽獎中獎的概率是1-
11
24
=
13
24

四次抽獎是相互獨立的
∴中獎次數(shù)η~B(4,
13
,24

∴Dη=4×
13
24
×
11
24
=
143
144
點評:本題考查離散型隨機變量的分布列和期望,考查二項分布的方差公式,解本題的關(guān)鍵是看清題目中所給的變量的特點,看出符合的規(guī)律,選擇應用的公式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某公司春節(jié)聯(lián)歡會中設一抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球.活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎;獎金30元,三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金120元;其余情況無獎金.
(1)員工甲抽獎一次,求其獲得不同獎金的概率;
(2)員工乙幸運地先后獲得三次抽獎機會,求他累計獲得120獎金的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司春節(jié)聯(lián)歡會中設一抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球.活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎;獎金30元,三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金120元;其余情況無獎金.
(1)員工甲抽獎一次,求其獲得不同獎金的概率;
(2)員工乙幸運地先后獲得三次抽獎機會,求他累計獲得120獎金的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司春節(jié)聯(lián)歡會中設一抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球.活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎;獎金30元,三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金.
(1)員工甲抽獎一次所得獎金的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數(shù)的方差是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省成都九中高三(下)3月月考數(shù)學試卷(理科)(解析版) 題型:解答題

某公司春節(jié)聯(lián)歡會中設一抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球.活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎;獎金30元,三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金.
(1)員工甲抽獎一次所得獎金的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數(shù)的方差是多少?

查看答案和解析>>

同步練習冊答案