已知等差數(shù)列中,首項(xiàng)a1=1,公差d為整數(shù),且滿(mǎn)足數(shù)列滿(mǎn)足前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式an;
(2)若S2為,的等比中項(xiàng),求正整數(shù)m的值.
(1)an= 2n-1(2)m=12
解析試題分析:(1)由題意,得解得< d <.
又d∈Z,∴d = 2.∴an=1+(n-1)2=2n-1.
(2)∵,
∴.
∵,,,S2為S1,(m∈)的等比中項(xiàng),
∴,即, 解得m=12.
考點(diǎn):數(shù)列的應(yīng)用;數(shù)列遞推式.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等差數(shù)列中,,,記數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù)、,且,使得、、成等比數(shù)列?若存在,求出所有符合條件的、的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知等差數(shù)列中,,求的公差;
(2)有三個(gè)數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列滿(mǎn)足:,.的前n項(xiàng)和為.
(Ⅰ)求及;
(Ⅱ)令bn=(nN*),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的公差,等比數(shù)列為公比為,且,,.
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列,是否存在正整數(shù)(其中)使得和都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)的和
(2)令,求的前項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為等差數(shù)列,且
(1)求數(shù)列的第二項(xiàng);
(2)若成等比數(shù)列,求數(shù)列的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
等差數(shù)列的前項(xiàng)和為,且.
(1)數(shù)列滿(mǎn)足:求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com