【題目】已知函數(shù)(其中,),記函數(shù)的導函數(shù)為

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)是否存在實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.

【答案】(1)的單調減區(qū)間為,無遞增區(qū)間;(2)見解析

【解析】

I)求得也即的表達式,對求導,由此求得的單調區(qū)間.II)解法一:利用的單調性,求得的零點,由此求得關于的關系式.由于的導函數(shù),根據(jù)的單調性,可求得的最大值,利用這個最大值列不等式,用基本不等式等號成立的條件,求得的值.解法二:對分成兩類,利用求出的的范圍比較后求得的值.

(Ⅰ)

,∵,,∴恒成立,

的單調減區(qū)間為,無遞增區(qū)間;

(Ⅱ)解法一:由(Ⅰ)知上單調遞減,所以上必存在實數(shù)根,不妨記,即,可得 (*)

時,,即,當時,,即,

所以上單調遞增,在上單調遞減,

所以,

把(*)式代入可得,

依題意恒成立,又由基本不等式有,當且僅當時等號成立,解得,所以

代入(*)式得,,所以,又∵,所以解得

綜上所述,存在實數(shù),使得對任意正實數(shù)恒成立

解法二:要使恒成立,

時,,解得,所以,

時,,解得,所以,

依題意可知,①、②應同時成立,則,又∵,所以解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)設直線與曲線交于、兩點,若直線斜率之積為,求證:直線過定點,并求定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有極值,且函數(shù)的極值點是的極值點,其中是自然對數(shù)的底數(shù).(極值點是指函數(shù)取得極值時對應的自變量的值)

(1)求關于的函數(shù)關系式;

(2)當時,若函數(shù)的最小值為,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,真命題是( )

A. ,則為實數(shù)的充要條件是為共軛復數(shù);

B. “直線與曲線C相切”是“直線與曲線C只有一個公共點”的充分不必要條件;

C. “若兩直線,則它們的斜率之積等于”的逆命題;

D. 是R上的可導函數(shù),“若的極值點,則”的否命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),),曲線的上點 對應的參數(shù),將曲線經(jīng)過伸縮變換后得到曲線,直線的參數(shù)方程為

(1)說明曲線是哪種曲線,并將曲線轉化為極坐標方程;

(2)求曲線上的點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,⊥平面,底面為梯形,,,的中點

Ⅰ)證明:∥平面;

(Ⅱ)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是 (  )

A. “若,則,或”的否定是“若,或

B. a,b是兩個命題,如果a是b的充分條件,那么的必要條件.

C. 命題“,使 得”的否定是:“,均有

D. 命題“ 若,則”的否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

(1)求與圓相切,且與直線垂直的直線方程;

(2)在直線為坐標原點),存在定點(不同于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標.

【答案】(1)(2)答案見解析.

【解析】試題分析:

(1)設所求直線方程為,利用圓心到直線的距離等于半徑可得關于b的方程,解方程可得則所求直線方程為

(2)方法1:假設存在這樣的點,由題意可得,,然后證明為常數(shù)為即可.

方法2:假設存在這樣的點,使得為常數(shù),則據(jù)此得到關于的方程組,求解方程組可得存在點對于圓上任一點,都有為常數(shù).

試題解析:

(1)設所求直線方程為,即,

∵直線與圓相切,∴,得,

∴所求直線方程為

(2)方法1:假設存在這樣的點,

為圓軸左交點時,

為圓軸右交點時,

依題意,,解得,(舍去),或.

下面證明點對于圓上任一點,都有為一常數(shù).

,則,

,

從而為常數(shù).

方法2:假設存在這樣的點,使得為常數(shù),則,

,將代入得,

,即

恒成立,

,解得(舍去),

所以存在點對于圓上任一點,都有為常數(shù).

點睛:求定值問題常見的方法有兩種:

(1)從特殊入手,求出定值,再證明這個值與變量無關.

(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.

型】解答
束】
22

【題目】已知函數(shù)的導函數(shù)為,其中為常數(shù).

(1)當,的最大值,并推斷方程是否有實數(shù)解;

(2)若在區(qū)間上的最大值為-3,的值.

查看答案和解析>>

同步練習冊答案