【題目】函數(shù)圖象上不同兩點(diǎn) 處切線的斜率分別是, ,規(guī)定為線段的長(zhǎng)度)叫做曲線在點(diǎn)之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點(diǎn)的橫坐標(biāo)分別為1和2,則;

②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);

③設(shè)點(diǎn) 是拋物線上不同的兩點(diǎn),則;

④設(shè)曲線是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn), ,且,若恒成立,則實(shí)數(shù)的取值范圍是

其中真命題的序號(hào)為__________.(將所有真命題的序號(hào)都填上)

【答案】②③

【解析】對(duì)于①,由,

,

。故①錯(cuò)誤

對(duì)于②,常數(shù)函數(shù)y=1滿(mǎn)足圖象上任意兩點(diǎn)之間的彎曲度為常數(shù),故②正確;

對(duì)于③,設(shè), ,又

,

,故③正確。

對(duì)于④,由可得 ,

恒成立可得恒成立,

而當(dāng)時(shí)該式恒成立,故④錯(cuò)誤。

綜上可得②③正確。

答案:②③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)同時(shí)擲兩顆骰子,得到點(diǎn)數(shù)分別為a,b,則橢圓 =1(a>b>0)的離心率e> 的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則關(guān)于函數(shù)y=f(x),下列說(shuō)法正確的是(
A.在x=﹣1處取得極大值
B.在區(qū)間[﹣1,4]上是增函數(shù)
C.在x=1處取得極大值
D.在區(qū)間[1,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣ 與x=1時(shí)都取得極值.
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上不單調(diào),求的取值范圍.

(2)令,是否存在實(shí)數(shù),對(duì)任意,存在,使得成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex
(Ⅰ)求曲線f(x)過(guò)O(0,0)的切線l方程;
(Ⅱ)求曲線f(x)與直線x=0,x=1及x軸所圍圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面, 是棱上的一個(gè)動(dòng)點(diǎn).

(Ⅰ)若的中點(diǎn),求證: 平面;

)求證:平面平面

(Ⅲ)若三棱錐的體積是四棱錐體積的,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求證:

(Ⅲ)判斷曲線是否位于軸下方,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)). 

(1)若在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若,且有兩個(gè)極值點(diǎn), ),求取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案