20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{6}$,則$\overrightarrow{a}$$•\overrightarrow$=$\sqrt{3}$.

分析 直接利用向量的數(shù)量積的求法,求解即可.

解答 解:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{6}$,則$\overrightarrow{a}$$•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>=2×$1×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查向量的數(shù)量積的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.當(dāng)x=0時,函數(shù)f(x)=$\frac{1}{2}$(ex+e-x)取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.是否存在同時滿足下列條件的雙曲線,若存在,求出其方程;若不存在,說明理由.
(1)漸近線方程是x±2y=0;
(2)點A(5,0)到雙曲線上的動點P的距離的最小值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線3x2-y2=3,過P(2,1)點作一直線交雙曲線于A、B兩點,若P為AB的中點.
(1)求直線AB的方程;
(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x∈(1,+∞)時,對數(shù)函數(shù)f(x)=(a-1)logax( 。
A.單調(diào)遞增B.單調(diào)遞減
C.部分遞增部分遞減D.既不遞增也不遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知|$\overrightarrow{a}$|=10,|$\overrightarrow$|=12,且$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,求(3$\overrightarrow{a}$)•($\frac{1}{5}$$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{8}$=1,過點M(1,1)的直線與橢圓相交于A、B兩點,若M為弦AB的中點,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在x=1時取得極值,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對?x1,x2∈(0,+∞),且x1≠x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>-2$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{2x}{1+{x}^{2}}$,關(guān)于x的方程(f(x))2+af(x)+b=0(a,b∈R)有如下幾個判斷:
(1)存在實數(shù)a,b,使此方程無實數(shù)解;
(2)存在實數(shù)a,b,使此方程有2個不同的實數(shù)解;
(3)存在實數(shù)a,b,使此方程有4個不同的實數(shù)解;
(4)存在實數(shù)a,b,使此方程有6個不同的實數(shù)解;
其中正確的判斷個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案