(2012•棗莊一模)已知兩座燈塔A和B與海洋觀測(cè)站O的距離都為m(m>0,為常數(shù)),燈塔A在觀測(cè)站O的北偏東20°處,燈塔B在觀測(cè)站O的南偏東40°處,則燈塔A與B的距離為
3
m
3
m
分析:先根據(jù)題意確定∠AOB的值,再由余弦定理可直接求得AB的值.
解答:解:∵燈塔A在觀測(cè)站O的北偏東20°處,燈塔B在觀測(cè)站O的南偏東40°處,
∴∠AOB=120°,
∵AO=m,BO=m,
∴由余弦定理可得cos∠AOB=
m2+m2-AB2
2m2
=-
1
2

∴AB=
3
m
故答案為:
3
m.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,確定三角形的邊與角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊一模)設(shè)f(x)=
x-3,x≥10
f[f(x+5),x<10
則f(8)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊一模)如圖,CDEF是以圓O為圓心,半徑為1的圓的內(nèi)接正方形,將一顆豆子隨機(jī)地扔到該圓內(nèi),用A表示事件“豆子落在扇形OCFH內(nèi)”(點(diǎn)H將劣弧
EF
二等分),則事件A發(fā)生的概率P(A)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊一模)給定兩個(gè)長(zhǎng)度為1的平面向量
OA
OB
,它們的夾角為120°,如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧
AB
上變動(dòng).若
OC
=x
OA
+y
OB
(x,y∈R),則x-y的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊一模)設(shè)數(shù)列{an}滿足a1=1,a2=2,對(duì)任意的n∈N*,an+2是an+1與an的等差中項(xiàng).
(1)設(shè)bn=an+1-an,證明數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式;
(2)寫(xiě)出數(shù)列{an}的通項(xiàng)公式(不要求計(jì)算過(guò)程),令cn=
3
2
n(
5
3
-an)
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊一模)已知函數(shù)f(x)=
1
3
ax3+
b
2
x2+x+1
,其中a>0,a,b∈R.
(1)當(dāng)a,b滿足什么條件時(shí),f(x)取得極值?
(2)若f(x)在區(qū)間[1,2]上單調(diào)遞增,試用a表示b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案