精英家教網 > 高中數學 > 題目詳情

【題目】已知函數(其中是實數).

(1)求的單調區(qū)間;

(2)若設,且有兩個極值點,),求取值范圍.(其中為自然對數的底數).

【答案】(1)時,的單調遞增區(qū)間為,無單調遞減區(qū)間,時,的單調遞增區(qū)間為,單調遞減區(qū)間為(2).

【解析】

試題分析:(1)求出的定義域為,,由此利用導數性質和分類討論思想能求出的單調區(qū)間;(2)推導出,令,則恒成立,由此能求出的取值范圍.

試題解析:(1)的定義域為,

,,對稱軸,

(1)當,即時,

于是,函數的單調遞增區(qū)間為,無單調遞減區(qū)間.

(2)當,即時,,則恒成立

于是,的單調遞增區(qū)間為,無減區(qū)間.

,得,

時,,當時,

于是,的單調遞增區(qū)間為,單調遞減區(qū)間為.綜上所述:

時,的單調遞增區(qū)間為,無單調遞減區(qū)間.

時,的單調遞增區(qū)間為,單調遞減區(qū)間為

(2)由(1)知,若有兩個極值點,則,且

,,,,又,解得,于是,

),則恒成立,單調遞減,,即,故的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(1)討論函數的單調性;

(2)若函數有兩個極值點,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學利用周末組織教職員工進行了一次秋季登山健身的活動,有Ⅳ人參加,現將所有參加者按年齡情況分為,,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.

1)已知這兩組各有2名數學教師,現從這兩個組中各選取2人擔任接待工作,設兩組的選擇互不影響,求兩組選出的人中恰有1名數學老師的概率;

2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔任后勤保障工作,其中女教師的人數為,求的分布列和均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線上有一動點,過點作直線垂直于軸,動點上,且滿足為坐標原點),記點的軌跡為曲線.

(1)求曲線的方程;

(2)已知定點,,為曲線上一點,直線交曲線于另一點,且點在線段上,直線交曲線于另一點,求的內切圓半徑的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,設點,定義,其中為坐標原點,對于下列結論:

符合的點的軌跡圍成的圖形面積為8;

設點是直線:上任意一點,則;

設點是直線:上任意一點,則使得“最小的點有無數個”的充要條件是;

設點是橢圓上任意一點,則

其中正確的結論序號為  

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是自然對數的底數),.

1)若,求的極值;

2)對任意都有成立,求實數的取值范圍.

3)對任意證明:;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《中國詩詞大會》(第三季)亮點頗多,在“人生自有詩意”的主題下,十場比賽每場都有一首特別設計的開場詩詞在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《沁園春·長沙》、《蜀道難》、《敕勒歌》、《游子吟》、《關山月》、《清平樂·六盤山》排在后六場,且《蜀道難》排在《游子吟》的前面,《沁園春·長沙》與《清平樂·六盤山》不相鄰且均不排在最后,則后六場的排法有__________種.(用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高一年級某個班分成7個小組,利用假期參加社會公益服務活動每個小組必須全員參加,參加活動的次數記錄如下:

組別

參加活動次數

3

2

4

3

3

4

2

求該班的7個小組參加社會公益服務活動數的中位數及與平均數v

從這7個小組中隨機選出2個小組在全校進行活動匯報,求“選出的2個小組參加社會公益服務活動次數相等”的概率.

小組每組有4名同學,小組有5名同學,記“該班學參加社會公益服務活動的平均次數”為,寫出v的大小關系結論不要求證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4 坐標系與參數方程選講

在直角坐標系中,直線的參數方程為參數),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線極坐標方程為.

(1)求直線的普通方程以及曲線的參數方程;

(2)當時,為曲線上動點,求點到直線距離的最大值.

查看答案和解析>>

同步練習冊答案