如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=,點(diǎn)E是PD的中點(diǎn).
(I)證明PA⊥平面ABCD,PB∥平面EAC;
(II)求以AC為棱,EAC與DAC為面的二面角θ的正切值.

【答案】分析:(Ⅰ)根據(jù)底面ABCD是菱形判斷出∠ABC=60°,且四邊長(zhǎng)相等,在△PAB中,由PA2+AB2=2a2=PB2可推斷出PA⊥AB.同樣可推斷出,PA⊥AD,進(jìn)而根據(jù)直線與面垂直的定義判斷出PA⊥平面ABCD.進(jìn)而根據(jù)=判斷出、共面.,進(jìn)而根據(jù)直線與面平行的判定法則,推斷出PB∥平面EAC.
(Ⅱ)作EG∥PA交AD于G,由PA⊥平面ABCD.GH⊥AC于H,連接EH,進(jìn)而可推斷出EG⊥平面ABCD.EH⊥AC,進(jìn)而可知∠EHG即為二面角θ的平面角.進(jìn)而根據(jù)E是PD的中點(diǎn),從而G是AD的中點(diǎn),分別求得EG和GH,進(jìn)而根據(jù)求得答案.
解答:(Ⅰ)證明:因?yàn)榈酌鍭BCD是菱形,∠ABC=60°,
所以AB=AD=AC=a,
在△PAB中,由PA2+AB2=2a2=PB2知PA⊥AB.
同理,PA⊥AD,所以PA⊥平面ABCD.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212410389417029/SYS201310232124103894170017_DA/6.png">=
所以、共面.
又PB?平面EAC,所以PB∥平面EAC.

(Ⅱ)解:作EG∥PA交AD于G,由PA⊥平面ABCD.
知EG⊥平面ABCD.
作GH⊥AC于H,連接EH,則EH⊥AC,∠EHG即為二面角θ的平面角.
又E是PD的中點(diǎn),從而G是AD的中點(diǎn),
所以

點(diǎn)評(píng):本題主要考查了直線與平面垂直的判定和二面角的問(wèn)題.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大。
(Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)求二面角E-AC-D的大。
(Ⅱ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面是菱形的四棱錐S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=
2
SA,點(diǎn)P在SD上,且SD=3PD.
(1)證明SA⊥平面ABCD;
(2)設(shè)E是SC的中點(diǎn),求證BE∥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面是菱形的四棱錐 P-ABCD中,∠ABC=60°,PA⊥平面ABCD,點(diǎn)E、F、G分別為CD、PD、PB的中點(diǎn).PA=AD=2.
(1)證明:PC∥平面FAE;
(2)求二面角F-AE-D的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=2,PB=PD=2
2
,點(diǎn)F是PC的中點(diǎn).
(Ⅰ)求證:PC⊥BD;
(Ⅱ)求BF與平面ABCD所成角的大。
(Ⅲ)若點(diǎn)E在棱PD上,當(dāng)
PE
PD
為多少時(shí)二面角E-AC-D的大小為
π
6

查看答案和解析>>

同步練習(xí)冊(cè)答案