【題目】一種電子計(jì)時器顯示時間的方式如圖所示,每一個數(shù)字都在固定的全等矩形“顯示池”中顯示,且每個數(shù)字都由若干個全等的深色區(qū)域“ ”組成.已知在一個顯示數(shù)字8的顯示池中隨機(jī)取一點(diǎn),點(diǎn)落在深色區(qū)域內(nèi)的概率為.若在一個顯示數(shù)字0的顯示池中隨機(jī)取一點(diǎn),則點(diǎn)落在深色區(qū)域的概率為( )

A. B. C. D.

【答案】C

【解析】分析:此題屬于幾何概型。設(shè)一個 面積為1,根據(jù)在一個顯示數(shù)字8的顯示池中隨機(jī)取一點(diǎn),點(diǎn)落在深色區(qū)域內(nèi)的概率為.可求出一個矩形的面積再由深色區(qū)域的面積比矩形的面積可求得結(jié)果。

詳解設(shè)一個 面積為1,在一個顯示數(shù)字8的顯示池中,7 ”,

故深色區(qū)域面積為7,因?yàn)辄c(diǎn)落在深色區(qū)域內(nèi)的概率為,設(shè)矩形的面積為,

所以。在一個顯示數(shù)字0的顯示池中有6 ”,

故深色區(qū)域面積為6,

所以若在一個顯示數(shù)字0的顯示池中隨機(jī)取一點(diǎn),則點(diǎn)落在深色區(qū)域的概率為。 故選C。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三個人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.

(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

(2)求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).

1)將V表示成r的函數(shù)Vr),并求該函數(shù)的定義域;

2)討論函數(shù)Vr)的單調(diào)性,并確定rh為何值時該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在浙江省和青海省各取面積大小一樣的A,B兩塊區(qū)域,分別調(diào)查人均可支配收入.獲得數(shù)據(jù)顯示,浙江省的A區(qū)域的人均可支配收入為35537元,青海省的B區(qū)域的人均可支配收入為24542.

1)能否得到這兩塊區(qū)域的人均可支配收入為(元)?

2)若“A區(qū)域?yàn)?/span>70萬人,B區(qū)域?yàn)?/span>30萬人,請問這兩塊區(qū)域的人均可支配收入為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面的菱形, .

(1)證明:平面平面.

(2)若,直線與平面所成的角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{}的前項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*).

(1)若數(shù)列滿足:,求數(shù)列的通項(xiàng)公式;

(2)令,求數(shù)列{}的前n項(xiàng)和Tn.

(3) ,(n為正整數(shù)),問是否存在非零整數(shù),使得對任意正整數(shù)n,都有若存在,求的值,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用電,某市實(shí)行“階梯式”電價,將每戶居民的月用電量分為二檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度的部分按0.8元/度收費(fèi).某小區(qū)共有居民1000戶,為了解居民的用電情況,通過抽樣,獲得了今年7月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)試估計(jì)該小區(qū)今年7月份用電量用不超過260元的戶數(shù);

(3)估計(jì)7月份該市居民用戶的平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點(diǎn)的直線交于,兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案