20.設(shè)集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.

分析 (1)通過解不等式,求出集合A、B,從而求出其并集即可;(2)問題轉(zhuǎn)化為集合B是集合A的真子集,得到關(guān)于a的不等式組,解出即可.

解答 解:(1)解不等式x2+2x-3<0,
得-3<x<1,即A=(-3,1),…(2分)
當(dāng)a=3時(shí),由|x+3|<1,
解得-4<x<-2,即集合B=(-4,-2),…(4分)
所以A∪B=(-4,1);…(6分)
(2)因?yàn)閜是q成立的必要不充分條件,
所以集合B是集合A的真子集…(8分)
又集合A=(-3,1),B=(-a-1,-a+1),…(10分)
所以$\left\{\begin{array}{l}-a-1≥-3\\-a+1<1\end{array}\right.$或$\left\{\begin{array}{l}-a-1>-3\\-a+1≤1\end{array}\right.$,…(12分)
解得0≤a≤2,
即實(shí)數(shù)a的取值范圍是0≤a≤2…(14分)

點(diǎn)評 本題考查了解不等式問題,考查充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)和g(x)分別是定義在[-10,10]上的奇函數(shù)和偶函數(shù),則函數(shù)F(x)=f(x)•g(x)的圖象關(guān)于( 。
A.x軸對稱B.y軸對稱C.原點(diǎn)對稱D.直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若定義在x∈(-∞,0)∪(0,+∞)的偶函數(shù)y=f(x)在(-∞,0)上的解析式為$f(x)=ln(-\frac{1}{x})$,則函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線斜率為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=(3a-1)x,當(dāng)m>n時(shí),f(m)<f(n),則實(shí)數(shù)a的取值范圍是($\frac{1}{3}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)$f(x)=\frac{1}{x}+a$為奇函數(shù),則實(shí)數(shù)a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知M={x∈N|$\frac{6}{6-x}$∈N},則集合M的子集的個(gè)數(shù)是( 。
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,斜三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,D是BC的中點(diǎn),A1D⊥平面ABC.
(1)求證:BC⊥A1A;
(2)若A1A=6,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)莖葉圖如圖所示,若眾數(shù)為c,則c=( 。
A.12B.14C.15D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{lg(x+1)}$的定義域是(  )
A.(-1,0)∪(0,+∞)B.[-3,+∞)C.[-3,-1)∪(-1,+∞)D.(-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案