分析 (1)運用數(shù)列的通項和前n項和的關(guān)系,化簡即可得到所求通項公式;
(2)運用對數(shù)的運算性質(zhì),和等差數(shù)列的求和公式,計算即可得到.
解答 解:(1)n=1時,a1=S1=2-1=1,
n>1時,an=Sn-Sn-1=2-$\frac{1}{{2}^{n-1}}$-(2-$\frac{1}{{2}^{n-2}}$)=$\frac{1}{{2}^{n-1}}$.
上式對n=1也成立,
則an=$\frac{1}{{2}^{n-1}}$.
(2)Tn=log2a1+log2a2+…+log2an
=(1-1)+(1-2)+…+(1-n)
=$\frac{1}{2}$(0+1-n)n=$\frac{1}{2}$n(1-n).
點評 本題考查數(shù)列的通項和前n項和的關(guān)系,考查等差數(shù)列的求和公式的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com