【題目】有下列四個(gè)命題:

,則x,y互為相反數(shù)的逆命題;

全等三角形的面積相等的否命題;

,則有實(shí)根的逆否命題;

直角三角形有兩個(gè)角是銳角的逆命題;

其中真命題為(

A.①②B.②③C.①③D.③④

【答案】C

【解析】

利用四種命題關(guān)系寫出四個(gè)命題,然后判斷真假即可.

解:①,則互為相反數(shù)的逆命題:

互為相反數(shù),則逆命題正確;

全等三角形的面積相等的否命題:不全等三角形的面積不相等,

三角形的命題公式可知只有三角形的底邊與高的乘積相等命題相等,所以否命題不正確;

,則有實(shí)根的逆否命題:沒有實(shí)根,則

因?yàn)?/span>沒有實(shí)根,所以可得,所以逆否命題正確;

直角三角形有兩個(gè)角是銳角的逆命題:兩個(gè)角是銳角的三角形是直角三角形,顯然不正確.

正確命題有①③.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點(diǎn)處的切線方程;

2)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線交于P,Q兩點(diǎn),且的面積為16O為坐標(biāo)原點(diǎn)).

1)求C的方程.

2)直線l經(jīng)過(guò)C的焦點(diǎn)Fl不與x軸垂直;lC交于A,B兩點(diǎn),若線段AB的垂直平分線與x軸交于點(diǎn)D,試問在x軸上是否存在點(diǎn)E,使為定值?若存在,求該定值及E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查了解某高等院校畢業(yè)生參加工作后,從事對(duì)工作與大學(xué)所學(xué)專業(yè)是否專業(yè)對(duì)口,該校隨機(jī)調(diào)查了80位該校2015年畢業(yè)的大學(xué)生,得到具體數(shù)據(jù)如下表:

(1)能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對(duì)口與性別有關(guān)?”

參考公式:

附表:

(2)求這80位畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對(duì)口的概率,并估計(jì)該校近3年畢業(yè)的2000名大學(xué)生總從事的工作與大學(xué)所學(xué)專業(yè)對(duì)口的人數(shù);

(3)若從工作與所學(xué)專業(yè)不對(duì)口的15人中選出男生甲、乙,女生對(duì)丙、丁,讓他們兩兩進(jìn)行一次10分鐘的職業(yè)交流,該校宣傳部對(duì)每次交流都一一進(jìn)行視頻記錄,然后隨機(jī)選取一次交流視頻上傳到學(xué)校的網(wǎng)站,試求選取的視頻恰為異性交流視頻的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為 ,過(guò)點(diǎn)軸垂直的直線交橢圓、兩點(diǎn), 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點(diǎn),直線 軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象在點(diǎn)處有相同的切線.

(Ⅰ)若函數(shù)的圖象有兩個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C)的左、右焦點(diǎn)分別是、,離心率為,過(guò)且垂直于軸的直線被橢圓C截得的線段長(zhǎng)為3

1)求橢圓C的方程;

2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接,設(shè)的角平分線PMC的長(zhǎng)軸于點(diǎn),求m的取值范圍;

3)在(2)的條件下,過(guò)點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個(gè)公共點(diǎn)設(shè)直線、的斜率分別為,若,試證明為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線ly=kx+b(0<b<1)和圓O相交于A,B兩點(diǎn).

1)當(dāng)k=0時(shí),過(guò)點(diǎn)AB分別作圓O的兩條切線,求兩條切線的交點(diǎn)坐標(biāo);

2)對(duì)于任意的實(shí)數(shù)k,在y軸上是否存在一點(diǎn)N,滿足?若存在,請(qǐng)求出此點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案