已知直線l1:3x-
3
y+1=0與直線l2
3
x-3y+2=0,則l1與l2的夾角為(  )
A、150°B、120°
C、60°D、30°
考點(diǎn):兩直線的夾角與到角問題
專題:直線與圓
分析:先根據(jù)直線的斜率求出直線的傾斜角,再利用兩條直線的傾斜角的大小求出這兩條直線的夾角.
解答: 解:因?yàn)橹本l1的斜率為
3
,故傾斜角為60°,直線l2的斜率為
3
3
,傾斜角為30°,故兩直線的夾角為30°,
故選:D.
點(diǎn)評:本題考查直線的斜率和傾斜角的關(guān)系,由兩條直線的傾斜角求出兩條直線的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2xcos2x
22x-1
的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人輪流投一枚均勻硬幣,甲先投,誰先得到正面誰獲勝,求投幣不超過四次即決定勝負(fù)的概率( 。
A、
1
2
B、
1
4
C、
1
8
D、
15
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中錯誤的是( 。
A、命題“若p則q”與命題“若¬q則¬p”互為逆否命題
B、y=f(x),x∈R,滿足f(x+2)=-f(x),則該函數(shù)是周期為4的函數(shù)
C、命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為真
D、若實(shí)數(shù)x,y∈[0,1],則滿足x2+y2>1的概率為
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,若z=(
1+i
1-i
2012+(
1-i
1+i
2013,則它的共軛復(fù)數(shù)
.
z
為( 。
A、1-iB、-1+i
C、1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
2
-
1
x2
n的二項(xiàng)展開式中,只有第四項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中常數(shù)項(xiàng)是(  )
A、-15
B、15
C、-
15
16
D、
15
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4,5},B={y|y=2x-1,x∈A},則A∩B=( 。
A、{2,4}
B、{1,3,5}
C、{1,2,3,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ+
1
tanθ
=2,則sinθ+cosθ等于( 。
A、2
B、
2
C、-
2
D、±
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x)滿足:①對于任意x,y∈(-∞,0)∪(0,+∞),f(x•y)=f(x)+f(y);②當(dāng)x>1時,f(x)>0,且f(2)=1.
(1)試判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(3)求函數(shù)f(x)在(0,4]的最大值;
(4)求定義在(0,+∞)上的不等式f(3x-2)+f(x)≤4的解集.

查看答案和解析>>

同步練習(xí)冊答案