精英家教網 > 高中數學 > 題目詳情
已知P(x,y)滿足
x+y-3≥0
y≤4
x≤1
,Q是x軸上一個動點,定點R(2,3),則|PQ|+|QR|可以取到的最小值是
 
分析:先畫出滿足條件
x+y-3≥0
y≤4
x≤1
的平面區(qū)域,把|PQ|+|QR|可以取到的最小值問題轉化為可行域內的點到M點的距離最小問題即可.
解答:精英家教網解:由題可知不等式組確定的區(qū)域為陰影部分包括邊界,
R關于x軸對稱的點為M(2,-3)
由圖可知:
則|PQ|+|QR|可以取到的最小值即為可行域內的A到M的距離,|PQ|min等于點P到x軸的距離,
即為:
26

故答案為:
26
點評:本題屬于線性規(guī)劃中的延伸題,對于可行域不要求線性目標函數的最值,而是求可行域內的點與P之間的距離問題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知P(x,y)滿足約束條件
x+y-3≤0
x-y-1≤0
x-1≥0
,則x-2y的最大值是
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知P(x,y)滿足約束條件
x+y-3≤0
x-y-1≤0
x-1≥0
,O為坐標原點,A(3,4),則|
OP
|•cos∠AOP
的最大值是
11
5
11
5

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省連云港市贛榆縣贛馬高級中學高三數學小題狂做026(解析版) 題型:填空題

已知P(x,y)滿足約束條件,O為坐標原點,A(3,4),則的最大值是   

查看答案和解析>>

科目:高中數學 來源:2011年北京市高考數學零模試卷(理科)(解析版) 題型:解答題

已知P(x,y)滿足,Q是x軸上一個動點,定點R(2,3),則|PQ|+|QR|可以取到的最小值是   

查看答案和解析>>

同步練習冊答案