5.已知函數(shù)f(x)是定義在R上的奇函數(shù),且是以2為周期的周期函數(shù),若當(dāng)x∈[0,1)時,f(x)=2x-1,則f(${log_{\frac{1}{2}}}$5)的值為-$\frac{1}{4}$.

分析 由題意可得:f(${log_{\frac{1}{2}}}$5)=f(-log25)=-f(log25).結(jié)合函數(shù)的周期性,根據(jù)題中的條件代入函數(shù)解析式可得答案.

解答 解:由題意可得:f(${log_{\frac{1}{2}}}$5)=f(-log25),
因為f(x)是定義在R上的奇函數(shù),所以f(${log_{\frac{1}{2}}}$5)=-f(log25).
又因為f(x)是周期為2的周期函數(shù),所以f(log25)=f(log25-2)=f(log2$\frac{5}{4}$).
因為0<log2$\frac{5}{4}$<1,并且當(dāng)x∈[0,1)時,f(x)=2x-1,所以f(log25)=f(log2$\frac{5}{4}$)=$\frac{5}{4}$-1=$\frac{1}{4}$,
所以 f(${log_{\frac{1}{2}}}$5)=f(-log25)=-$\frac{1}{4}$.
故答案為:-$\frac{1}{4}$.

點評 本題主要考查函數(shù)的有關(guān)性質(zhì),如奇偶性、周期性,以及對數(shù)的有關(guān)運算性質(zhì),此題屬于基礎(chǔ)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,則z=$\frac{{y}^{2}}{x}$的最大值是 (  )
A.$\frac{1}{3}$B.9C.2D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$,過F2的直線交橢圓E于A、B兩點,且三角形ABF1的周長為8$\sqrt{2}$.
(1)求橢圓E的方程;
(2)是否存在直線l1:y=x+m與橢圓E交于不同的C、D兩點,且過線段CD的中點M與F2的直線l2垂直于直線l1?若有,求出m的值,若無,請分析說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知x=1是f(x)=2x+$\frac{x}$+lnx的一個極值點.
(Ⅰ)求b的值;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)-$\frac{3+a}{x}$,若函數(shù)g(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+$\frac{1}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若對于任意的x∈[1,+∞)及t∈[1,2],不等式f(x)≥t2-2mt+2恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.投資者王先生第一天以5元/股的價格買進(jìn)100股某股票,第2天該股票的價格漲了5%,但王先生認(rèn)為它還會繼續(xù)漲,就沒有售出,到了第3天,該股票下跌了4%,王先生擔(dān)心它繼續(xù)下跌,把股票全部賣出了.如果不計交易的手續(xù)費和 稅費,那么通過這次交易,王先生一共獲利( 。
A.5元B.4元C.1元D.4.5元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|0<2x+a≤3},B={x|-$\frac{1}{2}$<x<2}.
(1)當(dāng)a=-1 時,求A∩B.
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=xln(x-1)的零點是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直四棱柱ABCD-A1B1C1D1中,AB∥DC,AA1=1,AB:AD:BC:DC=3:4:5:6,側(cè)棱AA1⊥底面ABCD.
(I)證明:平面DCC1D1⊥平面ADD1A1
( II)若直線AA1與平面AB1C所成的角的余弦值為$\frac{\sqrt{13}}{7}$,求AB.

查看答案和解析>>

同步練習(xí)冊答案