【題目】設(shè)事件A表示“關(guān)于的一元二次方程有實(shí)根”,其中, 為實(shí)常數(shù).
(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù), 為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若為區(qū)間[0,5]上的均勻隨機(jī)數(shù), 為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:
(1)列出所有可能的事件,結(jié)合古典概型公式可得滿足題意的概率值為;
(2)利用題意畫出概率空間,結(jié)合幾何概型公式可得滿足題意的概率值為.
試題解析:
(Ⅰ)當(dāng)a∈{0,1,2,3,4,5},b∈{0,1,2}時(shí),共可以產(chǎn)生6×3=18個(gè)一元二次方程.
若事件A發(fā)生,則a 2-4b2≥0,即|a|≥2|b|. 又a≥0, b≥0,所以a≥2b.
從而數(shù)對(duì)(a,b)的取值為(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12組值.
所以P(A)=.
(Ⅱ)據(jù)題意,試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)镈={(a,b)|0≤a≤5,0≤b≤2},構(gòu)成事件A的區(qū)域?yàn)锳={(a,b)|0≤a≤5,0≤b≤2,a≥2b}.
在平面直角坐標(biāo)系中畫出區(qū)域A、D,如圖,
其中區(qū)域D為矩形,其面積S(D)=5×2=10,
區(qū)域A為直角梯形,其面積S(A)=.
所以P(A)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)(x∈R)d的導(dǎo)函數(shù)為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當(dāng)x≥0時(shí),f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知 , , .
(Ⅰ)求b和c;
(Ⅱ)求sin(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生在上學(xué)路上要經(jīng)過(guò)4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,遇到紅燈時(shí)停留的時(shí)間都是2min.
(1)求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率;
(2)這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間至多是4min的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率等于 .現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù),且是的導(dǎo)函數(shù),則( )
A. 24 B. -24 C. 10 D. -10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)從6名同學(xué)中選4名同學(xué)組成一個(gè)代表隊(duì),參加4×400米接力比賽,問(wèn)有多少種參賽方案?
(2)從6名同學(xué)中選4名同學(xué)參加場(chǎng)外啦啦隊(duì),問(wèn)有多少種選法?
(3) 4名同學(xué)每人可從跳高、跳遠(yuǎn)、短跑三個(gè)項(xiàng)目中,任選一項(xiàng)參加比賽,問(wèn)有多少種參賽方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】南宋數(shù)學(xué)家秦九韶早在《數(shù)書(shū)九章》中就獨(dú)立創(chuàng)造了已知三角形三邊求其面積的公式:“以小斜冪并大斜冪,減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減之,以四約之,為實(shí),一為從隅,開(kāi)方得積.”(即:S= ,a>b>c),并舉例“問(wèn)沙田一段,有三斜(邊),其小斜一十三里,中斜一十四里,大斜一十五里,欲知為田幾何?”則該三角形田面積為
A. 82平方里 B. 84平方里
C. 85平方里 D. 83平方里
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓E: +y2=1(a>1)的右焦點(diǎn)為F,右頂點(diǎn)為A,已知 ,其中O為原點(diǎn),e為橢圓的離心率.
(Ⅰ)求a的值;
(Ⅱ)動(dòng)直線l過(guò)點(diǎn)N(﹣2,0),l與橢圓E交于P,Q兩點(diǎn),求△OPQ面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com