5.某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進(jìn)入2l世紀(jì)以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記2008年為第1年,且前4年中,第x年與年產(chǎn)量f(x) (萬件)之間的關(guān)系如下表所示:
x1234
f(x) 4.005.587.008.44
以下有三種函數(shù)模型:f(x)=ax+b,f(x)=2x+a,f(x)=log${\;}_{\frac{1}{2}}$x+a
(1)找出你認(rèn)為最適合的函數(shù)模型,并說明理由,然后選取08年和10年的數(shù)據(jù)求出相應(yīng)的解析式;
(2)因遭受某國對該產(chǎn)品進(jìn)行反傾銷的影響,2014年的年產(chǎn)量比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,確定2014年的年產(chǎn)量.

分析 (1)把給出的三個模型分別驗證,即可找出一個比較適合的模型;
(2)利用(1)的模型,先計算出預(yù)計的2014的產(chǎn)量,再去掉減少30%即可得出.

解答 解:(1)符合條件的是f(x)=ax+b,
若模型為f(x)=2x+a,則由f(1)=2+a=4,得a=2,即f(x)=2x+2,
此時f(2)=6,f(3)=10,f(4)=18,與已知相差太大,不符合.
若模型為f(x)=log${\;}_{\frac{1}{2}}$x+a,則f(x)是減函數(shù),與已知不符合.
由已知得$\left\{\begin{array}{l}{a+b=4}\\{3a+b=7}\end{array}\right.$,解得a=$\frac{3}{2}$,b=$\frac{5}{2}$,
∴f(x)=$\frac{3}{2}$x+$\frac{5}{2}$,(x=1,2,…,6,7)經(jīng)驗證x=2,4,符合的比較好.
(2)∵2014年預(yù)計年產(chǎn)量為f(7)=$\frac{3}{2}×7+\frac{5}{2}$=13,∴13×(1-30%)=9.1,
即確定2014年的年產(chǎn)量約為9.1萬件.

點(diǎn)評 熟練掌握建立模型的方法、不同函數(shù)模型的單調(diào)性等性質(zhì)及正確計算是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.O為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn),已知AB=2OA,且點(diǎn)B的縱坐標(biāo)大于0
(1)求$\overrightarrow{AB}$的坐標(biāo);
(2)求圓C1:x2-6x+y2+2y=0關(guān)于直線OB對稱的圓C2的方程;在直線OB上是否存在點(diǎn)P,過點(diǎn)P的任意一條直線如果和圓C1圓C2都相交,則該直線被兩圓截得的線段長相等,如果存在求出點(diǎn)P的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且-1≤f(-1)≤2,2≤f(1)≤4,求點(diǎn)(a,b)的集合表示的平面區(qū)域的面積;
(2)若t=2+$\frac{1}{{x}^{2}-x}$,(x<1且x≠0),求函數(shù)f(x)的最大值;
(3)若t=x-a-3(a∈R),不等式b2+c2-bc-3b-1≤f(x)≤a+4(b,c∈R)的解集為[-1,5],求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{{x^2}+8x+16}$+$\sqrt{{x^2}-10x+25}$.
(1)求不等式f(x)≥f(-4)的解集;
(2)設(shè)函數(shù)g(x)=k(x-5),k∈R,若f(x)>g(x)對任意x∈R都成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是①②⑤(寫出所有正確命題的編號).
①當(dāng)$0<CQ<\frac{1}{2}$時,S為四邊形    
②當(dāng)$CQ=\frac{1}{2}$時,S為等腰梯形
③當(dāng)$CQ=\frac{3}{4}$時,S與C1D1的交點(diǎn)R滿足${C_1}{R_1}=\frac{1}{4}$
④當(dāng)$\frac{3}{4}<CQ<1$時,S為六邊形    
⑤當(dāng)CQ=1時,S的面積為$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)y=log${\;}_{\frac{1}{3}}$(4+3x-x2)的一個單調(diào)遞增區(qū)間是[$\frac{3}{2}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)滿足f(lge)•f(lg$\frac{1}{e}$)<0的是( 。
A.f(x)=2xB.f(x)=lnxC.f(x)=x3D.f(x)=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.命題“若∠C=90°,則△ABC是直角三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0
(1)求證:對任意m∈R直線l與圓C總有兩個交點(diǎn)A,B;
(2)若定點(diǎn)P(1,1)分弦AB為$|AP|=\frac{1}{2}|PB|$,求此直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案