5.已知點(diǎn)A(4,8)關(guān)于直線l1:x+y=4的對稱點(diǎn)B在拋物線C:y2=2px(p>0)的準(zhǔn)線上.
(1)求拋物線C的方程;
(2)直線l2與x軸交于點(diǎn)D,與拋物線C交于E、F兩點(diǎn). 是否存在定點(diǎn)D,使得$\frac{1}{{D{E^2}}}+\frac{1}{{D{F^2}}}$為定值?若存在,請指出點(diǎn)D的坐標(biāo),并求出該定值;若不存在,請說明理由.

分析 (1)設(shè)B(m,n),則$\left\{\begin{array}{l}\frac{n-8}{m-4}=1\\ \frac{m+4}{2}+\frac{n+8}{2}=4\end{array}\right.$,解得p值,可得拋物線C的方程;
(2)設(shè)E(x1,y1),F(xiàn)(x2,y2),l2:x=sy+t,聯(lián)立拋物線方程并整理得:y2-16sy-16t=0.結(jié)合韋達(dá)定理可得$\frac{1}{{D{E^2}}}+\frac{1}{{D{F^2}}}$=$\frac{1}{{t}^{2}}$+$\frac{t-8}{8{t}^{2}({s}^{2}+1)}$,所以t=8時,存在定點(diǎn)D(8,0),使得$\frac{1}{{D{E^2}}}+\frac{1}{{D{F^2}}}$為定值$\frac{1}{64}$.

解答 解:(1)設(shè)B(m,n),
則$\left\{\begin{array}{l}\frac{n-8}{m-4}=1\\ \frac{m+4}{2}+\frac{n+8}{2}=4\end{array}\right.$
∴$m=-4,n=0,-\frac{p}{2}=-4,p=8$,
所以拋物線C的方程為y2=16x.
 (2)設(shè)E(x1,y1),F(xiàn)(x2,y2),l2:x=sy+t,
由$\left\{\begin{array}{l}x=sy+t\\{y^2}=16x\end{array}\right.得{y^2}-16sy-16t=0$.
其中△=(16s)2+64t>0,則y1+y2=16s,y1y2=-16t,
$\frac{1}{{D{E^2}}}+\frac{1}{{D{F^2}}}$=$\frac{1}{({x}_{1}-t)^{2}+{y}_{1}^{2}}$+$\frac{1}{{({x}_{2}-t)}^{2}+{y}_{2}^{2}}$=$\frac{1}{({s}^{2}+1){y}_{1}^{2}}$+$\frac{1}{({s}^{2}+1){y}_{2}^{2}}$=$\frac{{y}_{1}^{2}+{y}_{1}^{2}}{({s}^{2}+1){y}_{1}^{2}{y}_{2}^{2}}$=$\frac{{({y}_{1}^{\;}+{y}_{2}^{\;})}^{2}-{2y}_{1}{y}_{2}}{({s}^{2}+1){y}_{1}^{2}{y}_{2}^{2}}$=$\frac{8{s}^{2}+t}{8{t}^{2}({s}^{2}+1)}$=$\frac{1}{{t}^{2}}$+$\frac{t-8}{8{t}^{2}({s}^{2}+1)}$,
所以t=8時,存在定點(diǎn)D(8,0),使得$\frac{1}{{D{E^2}}}+\frac{1}{{D{F^2}}}$為定值$\frac{1}{64}$.

點(diǎn)評 本題考查的知識點(diǎn)是拋物線的簡單性質(zhì),直線與圓錐曲線的位置關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\sqrt{3}$sinx-acosx的圖象的一條對稱軸是x=$\frac{5π}{3}$,則g(x)=asinx+cosx=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$)的初相是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個算法的程序框圖如圖,則輸出結(jié)果是13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)命題p:∅=0,q:$\sqrt{2}$∈R,則下列結(jié)論正確的是( 。
A.p∧q為真B.p∨q為真C.p為真D.¬p為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等差數(shù)列{an}的首項(xiàng)a1=1,前五項(xiàng)之和S5=25,則{an}的通項(xiàng)an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.以下關(guān)于函數(shù)f(x)=$\frac{2x-1}{x-3}$(x≠3)的敘述正確的是( 。
A.函數(shù)f(x)在定義域內(nèi)有最值
B.函數(shù)f(x)在定義域內(nèi)單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于點(diǎn)(3,1)對稱
D.函數(shù)y=$\frac{5}{x}$的圖象朝右平移3個單位再朝上平移2個單位即得函數(shù)f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知平行四邊形ABCD中,AB=2,AD=1,∠DAB=60°,點(diǎn)E,F(xiàn)分別在線段BC,DC上運(yùn)動,設(shè)$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$,則$\overrightarrow{AE}•\overrightarrow{AF}$的最小值是$\frac{22}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知$2{S_n}={3^n}+3$.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足anbn=log3an,{bn}的前n項(xiàng)和Tn
①求Tn
②若P<Tn<Q對于n∈N*恒成立,求P與Q的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線x2-$\frac{{y}^{2}}{3}$=1的一條漸近線與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}-4}$=1相交與點(diǎn)P,若|OP|=2,則橢圓離心率為(  )
A.$\sqrt{3}$-1B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

同步練習(xí)冊答案