【題目】某城市100戶居民的月平均用電量(單位:度),以分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
【答案】(1);(2);(3).
【解析】
試題分析:(1)通過已知高的矩形面積和所有矩形的面積和為,求出未知高的一組的概率,除以底邊長即得的值;(2)頻率分布直方圖中頻率最高的一組的中點為眾數(shù),中位數(shù)是頻率為的分界點;(3)根據(jù)頻率分布直方圖求出四組的戶數(shù),根據(jù)分層抽樣的規(guī)則:按它們在總體中所占比例抽取即可.
試題解析:(1)由得:,
所以直方圖中的值是0.0075.
(2)月平均用電量的眾數(shù)為,
,
∴月平均用電量的中位數(shù)在內(nèi),設(shè)中位數(shù)為,由,得.
即月平均用電量的中位數(shù)為224.
(3)月平均用電量為的用戶有戶,用平均用電量為的用戶有戶,用平均用電量為的用戶有戶,用平均用電量為的用戶有戶,抽取比例為,
∴用平均用電量為的用戶中應(yīng)抽取戶.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測驗中,有6位同學(xué)的平均成績?yōu)?5分, 用xn表示編號為n(n=1,2,…,6)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?/span>
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學(xué)的成績x6,及這6位同學(xué)成績的標(biāo)準(zhǔn)差s;
(2)從前5位同學(xué)中選2位同學(xué),求恰有1位同學(xué)成績在區(qū)間(68,75)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求過直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點,且到點P(0,4)的距離為2的直線方程.
(2)設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).若l在兩坐標(biāo)軸上的截距相等,求l的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長為l的正方體中,E,F(xiàn),M分別是AB、AD、的中點,又P、Q分別在線段上,且,設(shè)面面MPQ=,則下列結(jié)論中不成立的是( )
A.面ABCD
B.AC
C.面MEF與面MPQ不垂直
D.當(dāng)x變化時,不是定直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,設(shè)命題p:函數(shù)為減函數(shù).命題q:當(dāng)時,函數(shù)f(x)=x+>恒成立.如果“p∨q”為真命題,“p∧q”為假命題,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校調(diào)查了20名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中的值;
(2)從每周自習(xí)時間在的受調(diào)查學(xué)生中,隨機抽取2人,求恰有1人的每周自習(xí)時間在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一船由西向東航行,在A處測得某島M的方位角為α,前進5km后到達B處,測得島M的方位角為β.已知該島周圍3km內(nèi)有暗礁,現(xiàn)該船繼續(xù)東行.
(1)若α=2β=60°,問該船有無觸礁危險?
(2)當(dāng)α與β滿足什么條件時,該船沒有觸礁的危險?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接春節(jié),某工廠大批生產(chǎn)小孩具—— 拼圖,工廠為了規(guī)定工時定額,需要確定加工拼圖所花費的時間,為此進行了10次試驗,測得的數(shù)據(jù)如下:
拼圖數(shù) /個 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
加工時間 /分鐘 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
(1)畫出散點圖,并判斷與是否具有線性相關(guān)關(guān)系;
(2)求回歸方程;
(3)根據(jù)求出的回歸方程,預(yù)測加工2010個拼圖需要用多少小時?(精確到0.1)
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
, .
參考數(shù)據(jù) | 合計 | ||||||||||
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 550 | |
62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 | 917 | |
100 | 400 | 900 | 1600 | 2500 | 3600 | 4900 | 6400 | 8100 | 10000 | 38500 | |
620 | 1360 | 2250 | 3240 | 4450 | 5700 | 7140 | 8840 | 10350 | 12200 | 55950 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點到兩點的距離之和等于4,設(shè)點的軌跡為
(1)求曲線的方程;
(2)設(shè)、、是曲線上的三點.若,求線段的中點的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com