【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為 (為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的方程為.

(1)求直線(xiàn)和曲線(xiàn)的直角坐標(biāo)方程;

(2)已知點(diǎn),設(shè)直線(xiàn)與曲線(xiàn)的兩個(gè)交點(diǎn)為, ,若,求的值.

【答案】(1)直線(xiàn)的直角坐標(biāo)方程為, 的直角坐標(biāo)方程為;(2).

【解析】試題分析:(1)利用作商法,消去參數(shù)即可得到直線(xiàn)的直角坐標(biāo)方程, 兩邊同乘以利用 即可曲線(xiàn)的直角坐標(biāo)方程;(2)將直線(xiàn)的參數(shù)方程代入的直角坐標(biāo)方程為,由,根據(jù)直線(xiàn)參數(shù)方程的幾何意義,利用韋達(dá)定理列出關(guān)于的方程求解即可.

試題解析:(1)因?yàn)?/span>,所以,所以.

故直線(xiàn)的直角坐標(biāo)方程為.

,得.

,所以,得.

的直角坐標(biāo)方程為.

(2)設(shè), 的兩個(gè)參數(shù)分別為, .

,即,整理得.

所以.

,得.

, ,或.

當(dāng)時(shí), ,解得.

當(dāng)時(shí), ,解得.

綜上, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來(lái)每件售價(jià)為25元,年銷(xiāo)售8萬(wàn)件.

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷(xiāo)售量將相應(yīng)減少2000件,要使銷(xiāo)售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了抓住2022年冬奧會(huì)契機(jī),擴(kuò)大該商品的影響力,提高年銷(xiāo)售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和銷(xiāo)售策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷(xiāo)售量至少達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷(xiāo)售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)本市小學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行了調(diào)查,設(shè)平均每人每天做作業(yè)的時(shí)間為分鐘,有1200名小學(xué)生參加了此項(xiàng)調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計(jì)概率,則平均每天做作業(yè)的時(shí)間在0~60分鐘內(nèi)的學(xué)生的概率是( )

A. 0.32 B. 0.36 C. 0.7 D. 0.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題函數(shù)上單調(diào)遞減;命題曲線(xiàn)為雙曲線(xiàn).

(Ⅰ)若“”為真命題,求實(shí)數(shù)的取值范圍;

(Ⅱ)若“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面是正三角形的三棱錐中,D 為PC的中點(diǎn),

1)求證:平面 ;

2)求 BD 與平面 ABC 所成角的大。

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為常量,)的圖像經(jīng)過(guò)點(diǎn)

1)求的值;

2)當(dāng)時(shí),函數(shù)的圖像恒在函數(shù)圖像的上方,求實(shí)數(shù)的取值范圍;

3)是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)若函數(shù)f(x)=ax2-x-1有且僅有一個(gè)零點(diǎn), 求實(shí)數(shù)a的值.

(2)若函數(shù)f(x)=|4x-x2|+a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣(mài)也開(kāi)始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣(mài)在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣(mài)的問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用網(wǎng)絡(luò)外賣(mài)

偶爾或不用網(wǎng)絡(luò)外賣(mài)

合計(jì)

男性

50

50

100

女性

60

40

100

合計(jì)

110

90

200

(1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣(mài)的情況與性別有關(guān)?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣(mài)優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為二次函數(shù),不等式的解集是,且在區(qū)間上的最大值為12

1)求的解析式;

2)設(shè)函數(shù)上的最小值為,求的表達(dá)式及的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案