徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過(guò)100千米/小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為a元(a>0).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

解:(1)依題意知汽車從甲地勻速行駛到乙地所用時(shí)間為,全程運(yùn)輸成本為y=a×+0.01v2×= ….(4分)
故所求函數(shù)及其定義域?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/100627.png' />,v∈(0,100]….(6分)
(2)依題意知a,v都為正數(shù),故有,當(dāng)且僅當(dāng),即v=10時(shí),等號(hào)成立…(8分)
①若≤100,即0<a≤100時(shí),則當(dāng)v=時(shí),全程運(yùn)輸成本y最。10分)
②若>100,即a>100時(shí),則當(dāng)v∈(0,100]時(shí),有y′=-=
∴函數(shù)在v∈(0,100]上單調(diào)遞減,也即當(dāng)v=100時(shí),全程運(yùn)輸成本y最。14分)
綜上知,為使全程運(yùn)輸成本y最小,當(dāng)0<a≤100時(shí)行駛速度應(yīng)為v=千米/時(shí);當(dāng)a>100時(shí)行駛速度應(yīng)為v=100千米/時(shí).…(16分)
分析:(1)求出汽車從甲地勻速行駛到乙地所用時(shí)間,根據(jù)貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成,可得全程運(yùn)輸成本,及函數(shù)的定義域;
(2)利用基本不等式可得,當(dāng)且僅當(dāng),即v=10時(shí),等號(hào)成立,進(jìn)而分類討論可得結(jié)論.
點(diǎn)評(píng):本題考查函數(shù)模型的構(gòu)建,考查基本不等式的運(yùn)用,考查導(dǎo)數(shù)知識(shí),解題的關(guān)鍵是構(gòu)建函數(shù)模型,利用基本不等式求最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過(guò)100千米/小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為a元(a>0).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

同步練習(xí)冊(cè)答案