10.在周長為6的△ABC中,∠ABC=60°,點P在邊AB上,PH⊥CA于H(點H在邊CA上),且PH=$\frac{\sqrt{3}}{2}$,CP=$\frac{\sqrt{7}}{2}$,則邊CA的長為2.1.

分析 先求出HC=1,BC,再過C作CQ⊥AB于Q,求出BQ,AQ,利用周長為6,即可得出結(jié)論.

解答 解:∵PH=$\frac{\sqrt{3}}{2}$,CP=$\frac{\sqrt{7}}{2}$,∴HC=1,
設(shè)AH=x,則AC=x+1,AP=$\sqrt{{x}^{2}+\frac{3}{4}}$,
sinA=$\frac{\frac{\sqrt{3}}{2}}{\sqrt{{x}^{2}+\frac{3}{4}}}$,
由正弦定理,可得BO=$\frac{2(x+1)}{\sqrt{4{x}^{2}+3}}$.
過C作CQ⊥AB于Q,
∴BQ=$\frac{x+1}{\sqrt{4{x}^{2}+3}}$,AQ=$\frac{2x(x+1)}{\sqrt{4{x}^{2}+3}}$,
∵周長為6,
∴$\frac{2(x+1)}{\sqrt{4{x}^{2}+3}}$+$\frac{x+1}{\sqrt{4{x}^{2}+3}}$+$\frac{2x(x+1)}{\sqrt{4{x}^{2}+3}}$+x+1=6
∴(x2+1)(60x-66)=0,
∴x=1.1,
∴AC=2.1,
故答案為:2.1.

點評 本題考查正弦定理,考查三角形周長的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若變量x,y滿足x+5y+13=0(-3≤x≤2,且x≠1),則$\frac{y-1}{x-1}$的取值范圍是( 。
A.k≥$\frac{3}{4}$或k≤-4B.-4≤k≤$\frac{3}{4}$C.$\frac{3}{4}$≤k≤4D.-$\frac{3}{4}$≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一條直線經(jīng)過P(1,2),且與A(2,3)、B(4,-5)距離相等,則直線l為3x+2y-7=0和4x+y-6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)f(x)的圖象經(jīng)過點(9,3),則$f(\frac{1}{4})$=( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時,f(x)=x2-2x
(1)求函數(shù)y=f(x)的解析式;
(2)畫出f(x)的圖象的草圖,并由圖象直接寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)函數(shù)y=f(x)-K恰有4個零點時,直接寫出K的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列結(jié)論中正確的是( 。
A.各個面都是三角形的幾何體是三棱錐
B.以三角形的一邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.當(dāng)正棱錐的側(cè)棱長與底面多邊形的邊長相等時該棱錐可能是六棱錐
D.圓錐的頂點與底面圓周上的任一點的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\sqrt{1-{6}^{x}}$的定義域為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知橢圓的長軸長為10,離心率為$\frac{4}{5}$,求橢圓的標(biāo)準(zhǔn)方程;
(2)求與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦點,且經(jīng)過點(3$\sqrt{2}$,2)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計算.
(1)[125${\;}^{\frac{2}{3}}$+($\frac{1}{16}$)${\;}^{-\frac{1}{2}}$+7]${\;}^{\frac{1}{2}}$
(2)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+20150-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$
(3)2log525-3log232
(4)$\frac{{{{log}_{27}}16}}{{{{log}_3}8}}$.

查看答案和解析>>

同步練習(xí)冊答案