若a是1+2b與1-2b的等比中項(xiàng),則
2ab
|a|+2|b|
的最大值為
 
考點(diǎn):等比數(shù)列的性質(zhì)
專(zhuān)題:綜合題,等差數(shù)列與等比數(shù)列
分析:由a是1+2b與1-2b的等比中項(xiàng)得到4|ab|≤1,再由基本不等式法求得
2ab
|a|+2|b|
的最大值.
解答: 解:a是1+2b與1-2b的等比中項(xiàng),則a2=1-4b2⇒a2+4b2=1≥4|ab|.
|ab|≤
1
4

∵a2+4b2=(|a|+2|b|)2-4|ab|=1.
2ab
|a|+2|b|
2|ab|
1+4|ab|
=
4
(
1
|ab|
+2)2-4

|ab|≤
1
4

1
|ab|
≥4,
2ab
|a|+2|b|
的最大值為
4
32
=
2
4

故答案為:
2
4
點(diǎn)評(píng):本題考查等比中項(xiàng)以及不等式法求最值問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式(12-mn)•(lnm-lnn)≥0對(duì)任意正整數(shù)n恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(x0,y0)是函數(shù)f(x)=2014sinx的圖象上一點(diǎn),且f(x0)=2014,則該函數(shù)圖象在點(diǎn)M處的切線(xiàn)的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在極坐標(biāo)系中,設(shè)極徑為ρ(ρ>0),極角為θ(0≤θ<2π),⊙A的極坐標(biāo)方程為ρ=2cosθ,點(diǎn)C在極軸的上方,∠AOC=
 π 
6
.△OPQ是以O(shè)Q為斜邊的等腰直角三角形,若C為OP的中點(diǎn),求點(diǎn)Q的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,
xf′(x)-f(x)
x2
>0(x>0),則不等式xf(x)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的首項(xiàng)為
1
9
,且a4=
2
1
(2x)dx,則數(shù)列{an}的公比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2+ax+2=0與直線(xiàn)l相切于點(diǎn)A(-3,1)則直線(xiàn)l的方程為( 。
A、x+y+2=0
B、x-2y-2=0
C、x-y+4=0
D、2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

m=2是復(fù)數(shù)(m-2)+(m2-3m+2)i(m∈R)是純虛數(shù)的( 。
A、充分不必要條件
B、必要不充分條件
C、充分且必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)x-
3
y=0截圓x2+y2-4x=0所得劣弧所對(duì)的圓心角是(  )
A、
6
B、
π
3
C、
3
D、
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案