若cos(α-
π
6
)=
4
5
,則sin(2α+
π
6
)的值為
 
考點:二倍角的正弦
專題:三角函數(shù)的求值
分析:由2α+
π
6
=2α-
π
3
+
π
2
,用誘導公式和二倍角的余弦公式化簡可求得sin(2α+
π
6
)的值.
解答: 解:∵cos(α-
π
6
)=
4
5

∴sin(2α+
π
6
)=sin(2α-
π
3
+
π
2
)=cos(2α-
π
3
)=cos[2(α-
π
6
)]=2cos2(α-
π
6
)
-1=
7
25

故答案為:
7
25
點評:本題主要考查了誘導公式和二倍角的余弦公式的應(yīng)用,屬于基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐E-ABCD中,面ABE⊥面ABCD,側(cè)面ABE是等腰直角三角形,EA⊥EB,且AB∥CD,AB⊥BC,AB=2CD=2BC=2.
(Ⅰ)求證:AB⊥ED;
(Ⅱ)求直線CE與面ABE的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,過左焦點F(-
3
,0)且斜率為k的直線交橢圓于A,B兩點,線段AB的中點為M,直線l:x+4ky=0交橢圓E于C,D兩點.
(1)求橢圓E的方程;
(2)求證:點M在直線l上;
(3)若△BDM的面積是△ACM面積的3倍,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系中,O為原點,射線OA與x軸正半軸重合,射線OB是第一象限角平分線.在OA上有點列A1,A2,A3,…,An,…,在OB上有點列B1,B2,B3,…,Bn,…已知
OAn+1
=
4
5
OAn
,A1(5,0),|
OB1
|=
2
,|
OBn+1
|=|
OBn
|+
2

(1)求點A2,B1的坐標;
(2)求
OAn
OBn
的坐標;
(3)求△AnOBn面積的最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,1,0),B(1,2,1),C(0,0,2),則原點O到平面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點,M是E上一點且MF2與x軸垂直,直線MF1與E的另一個交點為N.
(1)若直線MN的斜率為
3
4
,求E的離心率;
(2)若直線MN在y軸上的截距為1,且a=3,求|MN|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α,β是兩個不重合的平面,其法向量分別為n1,n2,給出下列結(jié)論:
①若n1∥n2,則α∥β;    
②若n1∥n2,則α⊥β;
③若n1•n2=0,則α⊥β; 
④若n1•n2=0,則α∥β.
其中正確的是( 。
A、①③B、①②C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
1-log2x
+
1-x2
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式組
x2-4x+3<0
x2+2x-8>0
的解集是A,且存在x0∈A,使得不等式x2-ax+4>0成立.
(Ⅰ)求集合A;
(Ⅱ)求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案