求滿足下列條件的雙曲線方程

(1)以2x±3y=0為漸近線,且經(jīng)過點(diǎn)(1,2);

(2)離心率為,虛半軸長為2;

(3)與橢圓x2+5y2=5共焦點(diǎn)且一條漸近線方程為y-=0.

解:(1)設(shè)所求雙曲線方程為4x2-9y2=λ,點(diǎn)(1,2)在雙曲線上,將點(diǎn)的坐標(biāo)代入方程可得λ=-32,

∴所求雙曲線方程為4x2-9y2=-32,即.

(2)由題意b=2,e==,令c=5k,a=4k,則由b2=c2-a2=9k2=4,得k2=.∴a2=16k2=,

故所求的雙曲線的方程為.

(3)由已知得橢圓x2+5y2=5的焦點(diǎn)為(±2,0),又雙曲線的一條漸近線方程為y-=0,則另一條漸近線方程為y+=0.設(shè)所求雙曲線方程為3x2-y2=λ(λ>0),則a2=,b2=λ.

c2=a2+b2==4,即λ=3,

故所求的雙曲線方程為x2-=1.

點(diǎn)評:求雙曲線方程的方法要靈活選擇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)已知雙曲線的焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為
2
,且過點(diǎn)(4,-
10)
;
(2)與雙曲線
x2
9
-
y2
16
=1
有共同的漸近線,且經(jīng)過點(diǎn)M(-3,2
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的雙曲線方程
(1)兩焦點(diǎn)分別為F1(-10,0),F(xiàn)2(10,0),點(diǎn)P(8,0)在雙曲線上;
(2)已知雙曲線過A(3,-4
2
),B(
9
4
,5)
兩點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程.

(1)經(jīng)過點(diǎn)A(1,),且a=4;

(2)經(jīng)過點(diǎn)A(2,)、B(3,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的雙曲線方程:

(1)以2x±3y=0為漸近線,且經(jīng)過點(diǎn)(1,2);

(2)離心率為,虛半軸長為2;

(3)與橢圓x2+5y2=5共焦點(diǎn)且一條漸近線方程為y-x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程.

(1)經(jīng)過點(diǎn)A(1,),且a=4;

(2)經(jīng)過點(diǎn)A(2,)、B(3,-2).

查看答案和解析>>

同步練習(xí)冊答案