證明:.
數(shù)學歸納法或用放縮再拆項相消法.

試題分析:(ⅰ)當n=1時,,        2分
(ⅱ)假設當n=k時,                4分
則當n=k+1時,
要證:
只需證:
由于
所以              11分
于是對于一切的自然數(shù),都有        12分
此題也可以用放縮再拆項相消法.
點評:中檔題,本題解法較為靈活,可采用數(shù)學歸納法,也可以先放縮,再利用數(shù)列求和方法“裂項相消法”?傊,不等式證明中,“放縮”思想是常用的一中思想方法。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是關于的方程的根,
證明:(Ⅰ);(Ⅱ).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設f(x)=lnx+-1,證明:
(1)當x>1時,f(x)< (x-1);
(2)當1<x<3時,f(x)<.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,試證:;并求函數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,目標函數(shù)z=ax+2y僅在點(1,0)處取得最小值,則實數(shù)a的取值范圍是( 。
A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知實數(shù)x,y滿足
x-2y+1≥0
|x|-y-1≤0
,則z=2x+y的最大值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知: ,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知均為正數(shù),,則的最小值是        (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案