【題目】已知橢圓的離心率是,點在橢圓上,AB分別為橢圓的右頂點與上頂點,過點A,B引橢圓C的兩條弦AE、BF交橢圓于點E,F

求橢圓C的方程;

若直線AE,BF的斜率互為相反數(shù),

求出直線EF的斜率;

O為直角坐標(biāo)原點,求面積的最大值.

【答案】(1);(2)直線EF的斜率,面積的最大值.

【解析】

根據(jù)橢圓的離心率公式,將點代入橢圓方程,即可求得ab的值,求得橢圓方程;

設(shè)直線AEBF的方程,代入橢圓方程,求得EF點坐標(biāo),根據(jù)直線的斜率公式,即可直線EF的斜率;

設(shè)直線EF的方程,代入橢圓方程,利用韋達(dá)定理及弦長公式求得,根據(jù)三角形的面積公式及二次函數(shù)的性質(zhì),即可求得答案.

解:由橢圓的離心率,

,將點代入橢圓方程:,

解得,

橢圓的標(biāo)準(zhǔn)方程:

設(shè),,直線AE的方程:,

聯(lián)立,整理得:,

解得:,或,

,

設(shè)直線BF的方程為:,聯(lián)立,

整理得:,解得:,

,則直線EF的斜率,

直線EF的斜率;

設(shè)直線EF的方程:,,

整理得:

,則,

,

,

O到直線EF的距離,則,

設(shè),

時,取最大值,最大值為,

面積的最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京市環(huán)境保護監(jiān)測中心每月向公眾公布北京市各區(qū)域的空氣質(zhì)量狀況1月份各區(qū)域的濃度情況如表:

各區(qū)域1月份濃度單位:微克立方米

區(qū)域

濃度

區(qū)域

濃度

區(qū)域

濃度

懷柔

27

海淀

34

平谷

40

密云

31

延慶

35

豐臺

42

門頭溝

32

西城

35

大興

46

順義

32

東城

36

開發(fā)區(qū)

46

昌平

32

石景山

37

房山

47

朝陽

34

通州

39

從上述表格隨機選擇一個區(qū)域,其20181月份的濃度小于36微克立方米的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點P(2,1),且與x軸,y軸的正半軸分別交于A,B兩點,O為坐標(biāo)原點,當(dāng)取最大值時l的方程為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺機器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺機器在購買易損零件上所需的費用(單位:元),表示購機的同時購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設(shè)這臺機器在購機的同時每臺都購買個易損零件,或每臺都購買個易損零件,分別計算這臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買臺機器的同時應(yīng)購買個還是個易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD= ,則sin∠BAC=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,平面ABCD,EPD的中點,

求四棱錐的體積V;

FPC的中點,求證平面AEF

求證平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,求動圓圓心的軌跡方程;

(2) 求與雙曲線共漸近線,且過點的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)< ,則不等式f(x2)< + 的解集為(
A.(﹣
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2Sn=3an﹣1,其中n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)anbn= ,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習(xí)冊答案