如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,E是PC中點(diǎn),F(xiàn)為線段AC上一點(diǎn).

(Ⅰ)求證:BD⊥EF;

(Ⅱ)試確定點(diǎn)F在線段AC上的位置,使EF∥平面PBD,并說明理由.

答案:
解析:

  證明:(Ⅰ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/4925/0017/52b04004d0929a44bb5a429920fc2bdf/C/Image77.gif" width=38 height=17>平面

  所以.又四邊形是正方形,

  所以,,

  所以平面,又Ì 平面,

  所以  7分

  (Ⅱ):設(shè)交于,當(dāng)中點(diǎn),

  即時(shí),∥平面

  理由如下:連接

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/4925/0017/52b04004d0929a44bb5a429920fc2bdf/C/Image101.gif" width=26 height=17>∥平面,平面,平面平面,

  所以

  在△中,的中點(diǎn),

  所以中點(diǎn).

  在△中,分別為,的中點(diǎn),

  所以

  又Ë 平面,Ì 平面,

  故∥平面  14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,且PD=a,PA=PC=
2
a
,
(1)求證:PD⊥平面ABCD;(2)求二面角A-PB-D的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=
90°,側(cè)面PAD⊥底面ABCD.若PA=AB=BC=
12
AD.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置并證明,若不存在,請說明理由;
(Ⅲ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為等腰梯形,AB∥CD,AD=BC=2,對角線AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,直線PA與底面ABCD所成的角為60°,M為PD上的一點(diǎn).
(Ⅰ)證明:PD⊥AC;
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PB⊥平面EFD;
(2)求二面角C-PB-D的大。
(3)求點(diǎn)A到面EBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)設(shè)PD=AD=a,求三棱錐B-EFC的體積.

查看答案和解析>>

同步練習(xí)冊答案