16.函數(shù)f(x)=Acos(ωx+φ)( A>0,ω>0,|φ|<π)的部分圖象如圖所示,則f(${\frac{5π}{6}}$)=-$\sqrt{3}$.

分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由余弦函數(shù)的圖象的對(duì)稱中心坐標(biāo)求出φ的值,可得函數(shù)的解析式,從而求得f(${\frac{5π}{6}}$)的值.

解答 解:由函數(shù)f(x)=Acos(ωx+φ)( A>0,ω>0,|φ|<π)的部分圖象,可得A=2,
$\frac{3}{4}$•$\frac{2π}{ω}$=$\frac{5π}{12}$-(-$\frac{π}{3}$),求得ω=2.
再根據(jù)2×$\frac{5π}{12}$+φ=2kπ,k∈z,求得φ=2kπ-$\frac{5π}{6}$,∴φ=-$\frac{5π}{6}$,f(x)=2cos(2x-$\frac{5π}{6}$),
則f(${\frac{5π}{6}}$)=2cos$\frac{5π}{6}$=-$\sqrt{3}$,
故答案為:-$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Acos(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由余弦函數(shù)的圖象的對(duì)稱中心坐標(biāo)求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.點(diǎn)P在正方體ABCD-A1B1C1D1的面對(duì)角線BC1上運(yùn)動(dòng),則下列四個(gè)命題:
①三棱錐A1-D1DP的體積不變;  
②A1P∥平面ACD1;
③DP⊥BC1;  
④平面A1PB⊥平面PDB1
其中正確的命題的序號(hào)是( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ax2-2x+lnx+1.
(1)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)設(shè)g(x)=mx2+4mx+3,當(dāng)a=1時(shí),不等式f(x1)≤g(x2),x1∈(0,1],x2∈(-∞,+∞)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在Rt△ABC中,AB=4,AC=3,∠CAB=90°,以點(diǎn)B為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓的另一個(gè)焦點(diǎn)在AC邊上,且這個(gè)橢圓過(guò)A、C兩點(diǎn),則橢圓的離心率為( 。
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{5}}{3}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若曲線y=ex-$\frac{a}{e^x}$(a>0)上任意一點(diǎn)切線的傾斜角的取值范圍是[${\frac{π}{3}$,$\frac{π}{2}}$),則a=( 。
A.$\frac{1}{12}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知x、y滿足約束條件$\left\{\begin{array}{l}x≤a\\ x-2y+3≤0\\ 2x-y+3≥0\end{array}\right.$,且z=x+2y的最大值為11,則a=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在四棱臺(tái)ABCD-A1B1C1D1中,DD1⊥底面ABCD,四邊形ABCD為正方形,DD1=AD=2,A1B1=1,C1E∥平面 ADD1A1
(Ⅰ)證明:E為AB的中點(diǎn);
(Ⅱ)求二面角A-C1E-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知各項(xiàng)均為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且$\frac{1}{2}$,an,Sn是等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若an2=($\frac{1}{2}$)${\;}^{_{n}}$,設(shè)cn=$\frac{_{n}}{{a}_{n}}$+(-1)nan,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x-lnax,g(x)=$\frac{x}{{e}^{x}}$,其中a≠0,a∈R,e為自然常數(shù).
(1)討論f(x)的單調(diào)性和極值;
(2)當(dāng)a=1時(shí),求使不等式f(x)>mg(x)恒成立的實(shí)數(shù)m單位取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案