【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;
(2)若直線是曲線的切線,求的值.
【答案】(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.有極大值,無極小值.(2)
【解析】
(1)先求得函數(shù)的定義域.對(duì)函數(shù)求導(dǎo)有,利用導(dǎo)數(shù)的正負(fù)求得函數(shù)的單調(diào)區(qū)間以及極值.(2)先求得函數(shù)的導(dǎo)數(shù),設(shè)出切點(diǎn)的坐標(biāo),利用切點(diǎn)處的導(dǎo)數(shù)為,求得含有切點(diǎn)橫坐標(biāo)的表達(dá)式,并由此求得切點(diǎn)的橫坐標(biāo),從而求得的值.
的定義域?yàn)?/span>.
(1)當(dāng)時(shí),,
所以,令,
得,因?yàn)?/span>,所以.
與在區(qū)間上的變化情況如下:
2 | |||
+ | 0 | - | |
↗ | ↘ |
所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
有極大值,無極小值.
(2)因?yàn)?/span>,所以.
設(shè)直線與曲線的切點(diǎn)為,
所以,即. ①
又因?yàn)?/span>,
即,②
由①②得.
設(shè),因?yàn)?/span>,
所以在區(qū)間上單調(diào)遞增,
因?yàn)?/span>,即.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種型號(hào)的農(nóng)機(jī)具零配件,為了預(yù)測(cè)今年7月份該型號(hào)農(nóng)機(jī)具零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度1月份至6月份該型號(hào)農(nóng)機(jī)具零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)(單位:元)和銷售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(jià)(元) | 11.1 | 9.1 | 9.4 | 10.2 | 8.8 | 11.4 |
銷售量(千件) | 2.5 | 3.1 | 3 | 2.8 | 3.2 | 2.4 |
(1)根據(jù)1至6月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到0.01);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)農(nóng)機(jī)具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷售單價(jià),才能使該月利潤達(dá)到最大?(計(jì)算結(jié)果精確到0.1)
參考公式:回歸直線方程,
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高二年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高二年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表1:男生
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表2:女生
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊列聯(lián)表:
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | 總計(jì) |
(2)試采用獨(dú)立性檢驗(yàn)進(jìn)行分析,能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
參考數(shù)據(jù)與公式:,其中.
臨界值表:
0.1 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中對(duì)幾何學(xué)的研究比西方早一千多年.在該書中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵;將底面為矩形,一側(cè)棱垂直于底面的四棱錐稱為陽馬;將四個(gè)面均為直角三角形的四面體稱為鱉臑.如圖,在塹堵中,,,鱉臑的體積為2,則陽馬外接球表面積的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)了一種新產(chǎn)品,在推廣期邀請(qǐng)了100位客戶試用該產(chǎn)品,每人一臺(tái).試用一個(gè)月之后進(jìn)行回訪,由客戶先對(duì)產(chǎn)品性能作出“滿意”或“不滿意”的評(píng)價(jià),再讓客戶決定是否購買該試用產(chǎn)品(不購買則可以免費(fèi)退貨,購買則僅需付成本價(jià)).經(jīng)統(tǒng)計(jì),決定退貨的客戶人數(shù)是總?cè)藬?shù)的一半,“對(duì)性能滿意”的客戶比“對(duì)性能不滿意”的客戶多10人,“對(duì)性能不滿意”的客戶中恰有選擇了退貨.
(1)請(qǐng)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“客戶購買產(chǎn)品與對(duì)產(chǎn)品性能滿意之間有關(guān)”.
對(duì)性能滿意 | 對(duì)性能不滿意 | 合計(jì) | |
購買產(chǎn)品 | |||
不購買產(chǎn)品 | |||
合計(jì) |
(2)企業(yè)為了改進(jìn)產(chǎn)品性能,現(xiàn)從“對(duì)性能不滿意”的客戶中按是否購買產(chǎn)品進(jìn)行分層抽樣,隨機(jī)抽取6位客戶進(jìn)行座談.座談后安排了抽獎(jiǎng)環(huán)節(jié),共有4張獎(jiǎng)券,獎(jiǎng)券上分別印有200元、400元、600元和800元字樣,抽到獎(jiǎng)券可獲得相應(yīng)獎(jiǎng)金.6位客戶有放回的進(jìn)行抽取,每人隨機(jī)抽取一張獎(jiǎng)券,求6位客戶中購買產(chǎn)品的客戶人均所得獎(jiǎng)金不少于500元的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的左、右焦點(diǎn)分別為,軸,直線交軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.
(1)求橢圓的方程;
(2)過點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下結(jié)論:
①命題“若,則”的逆否命題“若,則”;
②“”是“”的充分條件;
③命題“若,則方程有實(shí)根”的逆命題為真命題;
④命題“若,則且”的否命題是真命題.
其中錯(cuò)誤的是__________.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com