在平面內,若過正三角形ABC的頂點A任作一條直線l,則l與邊BC相交的概率是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:作出如圖的模型,可以看出l與邊BC相交,則其一定出現(xiàn)在AB,AC兩者的內部,由幾何概率模型易得正解選項
解答:解:作出如圖的模型,可以看出l與邊BC相交,則其一定出現(xiàn)在AB,AC兩者的內部,由于角BAC=60°,由圖形知,l與邊BC相交的概率是
故選A.
點評:本題考查幾何概率模型,解題的關鍵是根據(jù)題設所做的描述作出正確的示意圖來,由圖得出答案.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面內,若過正三角形ABC的頂點A任作一條直線l,則l與邊BC相交的概率是( 。
A、
1
3
B、
1
4
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•崇明縣一模)如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1,右焦點為F2,過F1的直線交橢圓于A,B兩點,△ABF2的周長為8,且△AF1F2面積最大時,△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:①以PQ為直徑的圓與x軸的位置關系?
②在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大。

(II)當時,求的取值范圍.

20.如圖1,在平面內,的矩形,是正三角形,將沿折起,使如圖2,的中點,設直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側。

(1)求證:平面;

(2)設二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當時,都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年海南省海南中學高二(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

在平面內,若過正三角形ABC的頂點A任作一條直線l,則l與邊BC相交的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案