已知{an}是首項為2,公比為的等比數(shù)列,Sn為它的前n項和。

1)用Sn表示Sn+1;

2)是否存在自然數(shù)ck,使得成立。

 

答案:
解析:

1)由,得。(2)要使,只要。因為,所以,故只要。①

因為Sk+1>Sk(kÎN),所以,又Sk<4,故要使①成立,c只能取23。當(dāng)c=2時,因為S1=2,所以當(dāng)k=1時,c<Sk­不成立,從而①不成立。

因為,由Sk<Sk+1(kÎN),得,所以當(dāng)k³2時,,從而①不成立。

當(dāng)c=3時,因為S1=2S2=3,所以當(dāng)k=12時,c<Sk不成立,從而①不成立。

因為,又,所以當(dāng)k³3時,,從而①不成立。故不存在自然數(shù)c、k,使成立。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為19,公差為-2的等差數(shù)列,sn為{an}的前n項和.
(1)求通項an及sn
(2)設(shè){bn-an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項公式及其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為1的等比數(shù)列,Sn是{an}的前n項和,且9S3=S6,則數(shù)列{
1
an
}
的前5項和為( 。
A、
85
32
B、
31
16
C、
15
8
D、
85
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為1的等差數(shù)列,其公差d>0,且a3,a7+2,3a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,求f(n)=
Sn(n+6) Sn+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為1的等比數(shù)列,sn是{an}的前n項和,且8a3=a6,則數(shù)列{an}的前5項和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為a1,公比為q(q≠1)的等比數(shù)列,其前n項和為Sn,且有
S10
S5
=
33
32
,設(shè)bn=2q+Sn
(1)求q的值;
(2)數(shù)列{bn}能否為等比數(shù)列?若能,請求出a1的值;若不能,請說明理由;
(3)在(2)的條件下,求數(shù)列{nbn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案