【題目】已知向量,,,,函數,的最小正周期為.
(1)求的單調增區(qū)間;
(2)方程;在上有且只有一個解,求實數n的取值范圍;
(3)是否存在實數m滿足對任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范圍;若不存在,說明理由.
【答案】(1),(2)或(3)存在,且m取值范圍為
【解析】
(1)函數,的最小正周期為.可得,即可求解的單調增區(qū)間.
(2)根據x在上求解的值域,即可求解實數n的取值范圍;
(3)由題意,求解的最小值,利用換元法求解的最小值,即可求解m的范圍.
(1)函數f(x)1=2sin2(ωx)cos(2ωx)﹣1
=sin(2ωx)cos(2ωx)
=2sin(2ωx)
∵f(x)的最小正周期為π.ω>0
∴,
∴ω=1.
那么f(x)的解析式f(x)=2sin(2x)
令2x,k∈Z
得:x
∴f(x)的單調增區(qū)間為[,],k∈Z.
(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一個解,
轉化為函數y=f(x)+1與函數y=2n只有一個交點.
∵x在[0,]上,
∴(2x)
那么函數y=f(x)+1=2sin(2x)+1的值域為[,2],結合圖象可知
函數y=f(x)+1與函數y=2n只有一個交點.
那么2n<1或2n=2,
可得或n=1.
(3)由(1)可知f(x)=2sin(2x)
∴f(x2)min=﹣2.
實數m滿足對任意x1∈[﹣1,1],都存在x2∈R,
使得m()+1>f(x2)成立.
即m()+1>﹣2成立
令ym()+1
設t,那么()2+2=t2+2
∵x1∈[﹣1,1],
∴t∈[,],
可得t2+mt+5>0在t∈[,]上成立.
令g(t)=t2+mt+5>0,
其對稱軸t
∵t∈[,]上,
∴①當時,即m≥3時,g(t)min=g(),解得;
②當,即﹣3<m<3時,g(t)min=g()0,解得﹣3<m<3;
③當,即m≤﹣3時,g(t)min=g()0,解得m≤﹣3;
綜上可得,存在m,可知m的取值范圍是(,).
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①殘差平方和越小的模型,擬合的效果越好;
②用相關指數來刻畫回歸效果,越小,說明模型擬合的效果越好;
③散點圖中所有點都在回歸直線附近;
④隨機誤差滿足,其方差的大小可用來衡量預報精確度.
其中正確命題的個數是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“雙十一網購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動,當時參與的商家數量和促銷力度均有限,但營業(yè)額遠超預想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關系,得到下列數據:
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請用相關系數說明與之間是否存在線性相關關系(當時,說明與之間具有線性相關關系);
(2)根據(1)的判斷結果,建立與之間的回歸方程,并預測當時,對應的利潤為多少(精確到0.1).
附參考公式:回歸方程中中和最小二乘估計分別為
,相關系數
參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行抽獎活動,從裝有編號0,1,2,3四個球的抽獎箱中,每次取出后放回,連續(xù)取兩次,取出的兩個小球號碼相加之和等于6中特等獎,等于5中一等獎,等于4中二等獎,等于3中三等獎.
(1)求中二等獎的概率;
(2)求未中獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數),曲線的參數方程為(為參數).
(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?
(2)以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,已知直線的極坐標方程為.若上的點對應的參數為,點在上,點為的中點,求點到直線距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海洋藍洞是地球罕見的自然地理現象,被喻為“地球留給人類保留宇宙秘密的最后遺產”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,兩點間的距離,現在珊瑚群島上取兩點,,測得,,,,則,兩點的距離為___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某營養(yǎng)協(xié)會對全市18歲男生的身高作調查,統(tǒng)計顯示全市18歲男生的身高服從正態(tài)分布,現某校隨機抽取了100名18歲男生的身高分析,結果這100名學生的身高全部介于到之間.現將結果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖.
(1)若全市18歲男生共有人,試估計該市身高在以上的18歲男生人數;
(2)求的值,并計算該校18歲男生的身高的中位數(精確到小數點后三位);
(3)若身高以上的學生校服需要單獨定制,現從這100名學生中身高在以上的同學中任意抽取3人,這三人中校服需要單獨定制的人數記為,求的分布列和期望.
附: ,則;
,則;
,則.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com