拋物線(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.
(1)若線段AB的垂直平分線交x軸于N(x0,0),比較x0與3p大;
(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,求++…+的值.
解:設直線l方程為y=k(x+p),代入y2=4px.
得k2x2+(2k2p-4p)x+k2p2=0.Δ=4(k2p-2p)2-4k2·k2p2>0,得0<k2<1.
令A(x1,y1)、B(x2,y2),則x1+x2=-,y1+y2=k(x1+x2+2p)=,
AB中點坐標為(,).AB垂直平分線為y-=-(x-).
令y=0,得x0==p+.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.
(2)解:∵l的斜率依次為p,p2,p3,…時,AB中垂線與x軸交點依次為N1,N2,N3,….
∴點Nn的坐標為(p+,0).
|NnNn+1|=|(p+)-(p+)|=,=,
所求的值為[p3+p4+…+p21]=,因為0<k2<1,所以0<P<1
【解析】略
科目:高中數(shù)學 來源: 題型:
橢圓上有一點M(-4,)在拋物線(p>0)的準線l上,拋物線的焦點也是橢圓焦點.
(1)求橢圓方程;
(2)若點N在拋物線上,過N作準線l的垂線,垂足為Q距離,求|MN|+|NQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分15分)已知m是非零實數(shù),拋物線(p>0)
的焦點F在直線上。
(I)若m=2,求拋物線C的方程
(II)設直線與拋物線C交于A、B,△A,△的重心分別為G,H
求證:對任意非零實數(shù)m,拋物線C的準線與x軸的焦點在以線段GH為直徑的圓外。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年河北省邯鄲市高三下學期第一次(3月)模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
若拋物線C1:(p >0)的焦點F恰好是雙曲線C2:(a>0,b >0)的右焦點,且它們的交點的連線過點F,則雙曲線的離心率為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com