(本題滿分14分)
定義在(0,+∞)上的函數(shù),,且在處取極值。
(Ⅰ)確定函數(shù)的單調(diào)性。
(Ⅱ)證明:當(dāng)時,恒有成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間和最小值;
(Ⅱ)若函數(shù)在上是最小值為,求的值;
(Ⅲ)當(dāng)(其中="2.718" 28…是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)與函數(shù).
(I)若的圖象在點(diǎn)處有公共的切線,求實(shí)數(shù)的值;
(II)設(shè),求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/d/f4d492.gif" style="vertical-align:middle;" />(),設(shè).
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(2)求證:;
(3)求證:對于任意的,總存在,滿足,并確定這樣的的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)在上的最小值;
(2)若函數(shù)在上存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè).
(1)若在上存在單調(diào)遞增區(qū)間,求的取值范圍;
(2)當(dāng)時,在上的最小值為,求在該區(qū)間上
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式;
(2)若關(guān)于x的方程f(x)=k有三個根,求實(shí)數(shù)k的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com