【題目】在棱長為的正方體中,OAC的中點,E是線段D1O上一點,且D1E=λEO.

(1)若λ=1,求異面直線DECD1所成角的余弦值;

(2)若平面CDE平面CD1O,λ的值.

【答案】(1)(2)λ=2

【解析】分析:以為單位正交基底建立如圖所示的空間直角坐標(biāo)系,寫出各點的坐標(biāo),
(1)求出異面直線 1的方向向量用數(shù)量積公式兩線夾角的余弦值(或補角的余弦值)
(2)求出兩個平面的法向量,由于兩個平面垂直,故它們的法向量的內(nèi)積為0,由此方程求參數(shù)的值即可.

詳解:

(1)為單位正交基底建立如圖所示的空間直角坐標(biāo)系

A(1,0,0),,D1(0,0,1),

E,

于是,.

cos.

所以異面直線AECD1所成角的余弦值為.

(2)設(shè)平面CD1O的向量為m=(x1,y1,z1),由m·=0,m·=0

x1=1,得y1z1=1,即m=(1,1,1) . ………8

D1E=λEO,則E=.10

又設(shè)平面CDE的法向量為n=(x2,y2,z2),由n·=0,n·=0.

x2=2,得z2=-λ,即n=(-2,0,λ) .12

因為平面CDE平面CD1F,所以m·n=0,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)袋中裝有黑色球和白色球共7個,從中任取2個球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個球在每一次被摸出的機(jī)會都是等可能的,用X表示摸球終止時所需摸球的次數(shù).

(1)求隨機(jī)變量X的分布列和均值E(X);

(2)求甲摸到白色球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知

(1)求證:;

(2)若,A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市隨機(jī)選取位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計表,其中“√”表示購買,“×”表示未購買.

×

×

×

×

×

×

85

×

×

×

×

×

×

Ⅰ)估計顧客同時購買乙和丙的概率;

Ⅱ)估計顧客在甲、乙、丙、丁中同時購買中商品的概率;

Ⅲ)如果顧客購買了甲,則該顧客同時購買乙、丙、丁中那種商品的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)討論函數(shù)在定義域內(nèi)的極值點的個數(shù).

)若函數(shù)處取得極值,且對恒成立,求實數(shù)的取值范圍.

)當(dāng)時,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鞏固全國文明城市創(chuàng)建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項整治行為.為了了解市民對此項工作的“支持”與“反對”態(tài)度,隨機(jī)從存在違章搭建的戶主中抽取了男性、女性共名進(jìn)行調(diào)查,調(diào)查結(jié)果如下:

支持

反對

合計

男性

女性

合計

(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為對此項工作的“支持”與“反對”態(tài)度與“性別”有關(guān);

(2)現(xiàn)從參與調(diào)查的女戶主中按此項工作的“支持”與“反對”態(tài)度用分層抽樣的方法抽取人,從抽取的人中再隨機(jī)地抽取人贈送小禮品,記這人中持“支持”態(tài)度的有人,求的分布列與數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圖像上有一最低點,若圖像上各點縱坐標(biāo)不變,橫坐標(biāo)縮為原來的倍,再向左平移個單位得,又的所有根從小到大依次相差個單位,則的解析式為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)的焦點為,拋物線上存在一點到焦點的距離為3,且點在圓上.

(Ⅰ)求拋物線的方程;

(Ⅱ)已知橢圓)的一個焦點與拋物線的焦點重合,且離心率為.直線交橢圓兩個不同的點,若原點在以線段為直徑的圓的外部,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1+a2+a3+…an=2n﹣an(n∈N+).?dāng)?shù)列{bn}滿足bn= ,則{bn}中的最大項的值是

查看答案和解析>>

同步練習(xí)冊答案