【題目】已知函數(shù).
(1)證明函數(shù)在定義域上單調(diào)遞增;
(2)求函數(shù)的值域;
(3)令,討論函數(shù)零點(diǎn)的個(gè)數(shù).
【答案】(1)證明見解析;(2);(3)當(dāng)時(shí),沒有零點(diǎn);當(dāng)時(shí),有且僅有一個(gè)零點(diǎn)
【解析】
(1)求出函數(shù)定義域后直接用定義法即可證明;
(2)由題意得,對(duì)兩邊同時(shí)平方得,求出
的取值范圍即可得解;
(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.
(1)證明:令,解得,故函數(shù)的定義域?yàn)?/span>
令,
由,可得,所以,,
故即,所以函數(shù)在定義域上單調(diào)遞增.
(2)由,,故,
,
當(dāng)時(shí),,有,可得:,故,
由,可得,故函數(shù)的值域?yàn)?/span>,
(3)由(2)知,
則,
令,則,
令,
①當(dāng)時(shí),,此時(shí)函數(shù)沒有零點(diǎn),故函數(shù)也沒有零點(diǎn);
②當(dāng)時(shí),二次函數(shù)的對(duì)稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個(gè)零點(diǎn),又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個(gè)零點(diǎn);
③當(dāng)時(shí),,二次函數(shù)開口向下,對(duì)稱軸,
又 ,,此時(shí)函數(shù)沒有零點(diǎn),故函數(shù)也沒有零點(diǎn).
綜上,當(dāng)時(shí),函數(shù)沒有零點(diǎn);當(dāng)時(shí),函數(shù)有且僅有一個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的橢圓C經(jīng)過點(diǎn)M(2,1),N(,-).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某專賣店為了對(duì)新產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按不同的單價(jià)試銷,調(diào)查統(tǒng)計(jì)如下表:
售價(jià)(元) | 4 | 5 | 6 | 7 | 8 |
周銷量(件) | 90 | 85 | 83 | 79 | 73 |
(1)求周銷量y(件)關(guān)于售價(jià)x(元)的線性回歸方程;
(2)按(1)中的線性關(guān)系,已知該產(chǎn)品的成本為2元/件,為了確保周利潤(rùn)大于598元,則該店應(yīng)該將產(chǎn)品的售價(jià)定為多少?
參考公式:,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)于2018年11月5日至10日在上海的國(guó)家會(huì)展中心舉辦.國(guó)家展、企業(yè)展、經(jīng)貿(mào)論壇、高新產(chǎn)品匯集……首屆進(jìn)博會(huì)高點(diǎn)紛呈.一個(gè)更加開放和自信的中國(guó),正用實(shí)際行動(dòng)為世界構(gòu)筑共同發(fā)展平臺(tái),展現(xiàn)推動(dòng)全球貿(mào)易與合作的中國(guó)方案.
某跨國(guó)公司帶來(lái)了高端智能家居產(chǎn)品參展,供購(gòu)商洽談采購(gòu),并決定大量投放中國(guó)市場(chǎng).已知該產(chǎn)品年固定研發(fā)成本30萬(wàn)美元,每生產(chǎn)一臺(tái)需另投入90美元.設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品萬(wàn)臺(tái)且全部售完,每萬(wàn)臺(tái)的銷售收入為萬(wàn)美元,
(1)寫出年利潤(rùn)(萬(wàn)美元)關(guān)于年產(chǎn)量(萬(wàn)臺(tái))的函數(shù)解析式;(利潤(rùn)=銷售收入-成本)
(2)當(dāng)年產(chǎn)量為多少萬(wàn)臺(tái)時(shí),該公司獲得的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬(wàn)元)與產(chǎn)品銷售收入y(單位:萬(wàn)元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).
x(萬(wàn)元) | 3 | 5 | 7 | 9 | 11 |
y(萬(wàn)元) | 8 | 10 | 13 | 17 | 22 |
(1)求y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬(wàn)元的毛利率更大還是投入成本15萬(wàn)元的毛利率更大(毛利率)?
相關(guān)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有5人進(jìn)入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數(shù)字作最終答案:
恰好有5節(jié)車廂各有一人;
恰好有2節(jié)不相鄰的空車廂;
恰好有3節(jié)車廂有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的個(gè)數(shù)是_________.
(1)命題“若,則方程有實(shí)數(shù)根”的逆否命題為“若方程無(wú)實(shí)數(shù)根,則”.
(2)命題“,”的否定“,”.
(3)若為假命題,則,均為假命題.
(4)“”是“直線:與直線:平行”的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面四個(gè)命題中真命題的是( )
①在回歸分析模型中,殘差平方和越大,說(shuō)明模型的擬合效果越好;
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.4個(gè)單位;
④對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,“與有關(guān)系”的把握程度越大.
A.①④B.②④C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于的方程有兩個(gè)實(shí)根,函數(shù).
(1)求的值;
(2)判斷在區(qū)間的單調(diào)性,并加以證明;
(3)若均為正實(shí)數(shù),證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com