已知橢圓的左焦點為F
A.B.C.D.
B

代入得,解得,由此可得三角形ABF為直角三角形。
OF=5,即c=5.
由橢圓為中心對稱圖形可知當右焦點為時,,
【考點定位】本題考查橢圓定義,解三角形相關(guān)知識以及橢圓的幾何性質(zhì)。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點
線段垂直平分線交于點,求點的軌跡的方程;
(Ⅲ)設(shè)軸交于點,不同的兩點上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左、右焦點分別為F1、F2,P是橢圓上的一點,,且,垂足為,若四邊形為平行四邊形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左焦點為F, 離心率為, 過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;
(3)設(shè)點關(guān)于軸的對稱點為不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,且線段的中點恰好在軸上,,則            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相切,直線軸交于點,當為何值時的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓的兩個焦點,點M在橢圓上,若△是直角三角形,則△的面積等于(  )
A.48/5B.36/5C.16D.48/5或16

查看答案和解析>>

同步練習冊答案