A. | 銳角三角形 | B. | 以∠C為直角的Rt△ | C. | 鈍角三角形 | D. | 以∠A為直角的Rt△ |
分析 由$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{AB}$2=0,得:$\overrightarrow{AB}•(\overrightarrow{BC}+\overrightarrow{AB})$=$\overrightarrow{AB}•\overrightarrow{AC}=0$,即:$\overrightarrow{AB}⊥\overrightarrow{AC}$,可得三角形是以∠A為直角的Rt△.
解答 解:在△ABC中,由$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{AB}$2=0,
得$\overrightarrow{AB}•(\overrightarrow{BC}+\overrightarrow{AB})$=$\overrightarrow{AB}•\overrightarrow{AC}=0$,
∴$\overrightarrow{AB}⊥\overrightarrow{AC}$,
則△ABC是以A為直角的直角三角形.
故選:D.
點評 本題主要考查了平面向量數(shù)量積的含義,關(guān)鍵是通過向量的數(shù)量積為0得垂直關(guān)系,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\root{4}{{x}^{4}}$與g(x)=($\root{4}{x}$)4 | B. | f(x)=x與g(x)=$\root{3}{{x}^{3}}$ | ||
C. | f(x)=lnex與g(x)=elnx | D. | f(x)=$\frac{{x}^{2}-4}{x+2}$ 與g(x)=x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{3π}{2}$,$\frac{π}{2}$] | B. | [0,$\frac{π}{2}$] | C. | [-$\frac{π}{2}$,$\frac{π}{2}$] | D. | [-$\frac{π}{2}$,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com