【題目】某中學(xué)舉行了一次環(huán)保知識(shí)競賽活動(dòng).為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照,,的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x、y的值;

(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到市政廣場參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),求所抽取的2名同學(xué)來自不同組的概率.

【答案】(1);(2).

【解析】

試題分析:(1) 中樣本容量有8個(gè),頻率是這組的面積,頻率等于,根據(jù)頻率的計(jì)算公式得到,的頻率為2,那么這組的頻率在根據(jù)頻率和等于1計(jì)算;

(2)首先計(jì)算的人數(shù)以及80分以上的人數(shù),計(jì)算任選2名同學(xué)的方法種數(shù),和兩組個(gè)一人的方法種數(shù),然后再相除就是概率.

試題解析:解:(1)由題意可知,樣本容量

(2)由題意可知,分?jǐn)?shù)在[80,90)有5人,分?jǐn)?shù)在[90,100)有2人,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)有種情形,共有21個(gè)基本事件;

其中符合抽取的2名同學(xué)來自不同組的基本事件有共10個(gè),

所以P=10/21

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為, 過點(diǎn), 記橢圓的左頂點(diǎn)為.

(1)求橢圓的方程;

(2)設(shè)垂直于軸的直線交橢圓于兩點(diǎn), 試求面積的最大值;

(3)過點(diǎn)作兩條斜率分別為的直線交橢圓于兩點(diǎn),且, 求證: 直線恒過一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和直線,圓C與直線相切,并且圓心C關(guān)于點(diǎn)的對稱點(diǎn)在圓C上,直線軸相交于點(diǎn)

(Ⅰ)求圓心C的軌跡E的方程;

(Ⅱ)過點(diǎn)且與直線不垂直的直線與圓心C的軌跡E相交于點(diǎn)A、B,面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.

上圖中,已知課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡稱“組M”).

(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)為參加某地舉辦的自然科學(xué)營活動(dòng),從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.

(ⅰ)設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機(jī)變量的分布列;

(ⅱ)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營的費(fèi)用總和,求隨機(jī)變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){ }是首項(xiàng)為1公比為2的等比數(shù)列,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥1時(shí),討論函數(shù)f(x)與g(x)圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的極坐標(biāo)方程為ρsin(θ+ )=
(1)在極坐標(biāo)系下寫出θ=0和θ= 時(shí)該直線上的兩點(diǎn)的極坐標(biāo),并畫出該直線;
(2)已知Q是曲線ρ=1上的任意一點(diǎn),求點(diǎn)Q到直線l的最短距離及此時(shí)Q的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,設(shè)ai=2m(i∈N* , 3m﹣2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12 , 則滿足Si∈[1000,3000]的i的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過點(diǎn)C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.

(1)按下列要求建立函數(shù)關(guān)系;
(i)設(shè)AN=x米,將S表示為x的函數(shù);
(ii)設(shè)∠BMC=θ(rad),將S表示為θ的函數(shù).
(2)請你選用(1)中的一個(gè)函數(shù)關(guān)系,求出S的最小值,并求出S取得最小值時(shí)AN的長度.

查看答案和解析>>

同步練習(xí)冊答案