4.函數(shù)f(x)=$\frac{{9}^{x}-a}{{3}^{x}}$的圖象關(guān)于原點對稱,則a=( 。
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 若函數(shù)f(x)=$\frac{{9}^{x}-a}{{3}^{x}}$的圖象關(guān)于原點對稱,則函數(shù)為奇函數(shù),則f(-x)=-f(x),進而可得答案.

解答 解:函數(shù)f(x)=$\frac{{9}^{x}-a}{{3}^{x}}$的圖象關(guān)于原點對稱,
故函數(shù)為奇函數(shù),
則f(-x)=-f(x),
即$\frac{{9}^{-x}-a}{{3}^{-x}}$=$\frac{1-a{9}^{x}}{{3}^{x}}$=-$\frac{{9}^{x}-a}{{3}^{x}}$,
解得:a=1,
故選:A.

點評 本題考查的知識點是函數(shù)的圖象,函數(shù)的奇偶性,方程思想,轉(zhuǎn)化思想,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知2+$\frac{2}{3}$=22×$\frac{2}{3}$,3+$\frac{3}{8}$=32×$\frac{3}{8}$,4+$\frac{4}{15}$=42×$\frac{4}{15}$,…若9+$\frac{a}$=92×$\frac{a}$(a、b為正整數(shù)),則a+b等于( 。
A.89B.90C.98D.99

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.曲線$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ為參數(shù))的普通方程是2x+y-2=0,x∈[0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.學校為測評班級學生對任課教師的滿意度,采用“100分制”打分的方式來計分,規(guī)定滿意度不低于98分,則評價該教師為“優(yōu)秀”,現(xiàn)從某班學生中隨機抽取10名,如圖莖葉圖記錄了他們對某教師的滿意度分數(shù)(以十位數(shù)字為莖,個位數(shù)字為葉);
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這10人中隨機選取3人,至多有1人評價該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來估計整個班級的總體數(shù)據(jù),若從該班任選3人,記ξ表示抽到評價該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,已知$\frac{cosA}{cosB}$=$\frac{a}$=$\sqrt{3}$.
(1)求C;
(2)如圖,設(shè)半徑為R的圓O過A,B,C三點,點P位于劣弧$\widehat{AC}$上,∠PAB=θ,求四邊形APCB面積S(θ)的解析式及最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)y=f(x+2)的定義域為(0,2),則函數(shù)y=$\frac{f(x)}{x-2}$的定義域為(2,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}滿足:a1=1且an+1+$\frac{1}{{1+{a_n}}}$=0(n∈N*),則a2018=( 。
A.2$B.-$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)f(x)=$\left\{\begin{array}{l}{sin2x,x<0}\\{k-1,x≥0}\end{array}\right.$,問當k為何值時,函數(shù)f(x)在x=0點連續(xù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)偶函數(shù)f(x)的定義域為R,當x∈[0,+∞)時,f(x)是增函數(shù),則f(-2),f(π),f(-3)的大小關(guān)系是( 。
A.f(-2)<f(π)<f(-3)B.f(π)<f(-2)<f(-3)C.f(-2)<f(-3)<f(π)D.f(-3)<f(-2)<f(π)

查看答案和解析>>

同步練習冊答案