已知P(x0,y0)是拋物線y2=2px(p>0)上的一點,過P點的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時求導(dǎo),得:
2yy'=2p,則y'=,所以過P的切線的斜率:k=.
試用上述方法求出雙曲線x2-=1在P(,)處的切線方程為 .
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十四第五章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
等差數(shù)列{an}的公差不為零,首項a1=1,a2是a1和a5的等比中項,則數(shù)列的前10項之和是( )
(A)90(B)100(C)145 (D)190
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十五第六章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
已知a,b,c∈(0,+∞),若<<,則有( )
(A)c<a<b (B)b<c<a
(C)a<b<c (D)c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
在等比數(shù)列{an}中,a6與a7的等差中項等于48,a4a5a6a7a8a9a10=1286.如果設(shè)數(shù)列{an}的前n項和為Sn,那么Sn=( )
(A)5n-4(B)4n-3
(C)3n-2(D)2n-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
已知等比數(shù)列{an}的公比q=2,其前4項和S4=60,則a2等于( )
(A)8(B)6(C)-8(D)-6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
將石子擺成如圖的梯形形狀.稱數(shù)列5,9,14,20,…為“梯形數(shù)列”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2012項與5的差,即a2012-5=( )
(A)1009×2011 (B)1009×2010
(C)1009×2009 (D)1010×2011
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的首項為a1=1,其前n項和為Sn,且對任意正整數(shù)n有n,an,Sn成等差數(shù)列.
(1)求證:數(shù)列{Sn+n+2}成等比數(shù)列.
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)=D是由x軸和曲線y=f(x)及該曲線在點(1,0)處的切線所圍成的封閉區(qū)域,則z=x-2y在D上的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十第十章第七節(jié)練習(xí)卷(解析版) 題型:選擇題
將一枚硬幣連擲5次,如果出現(xiàn)k次正面向上的概率等于出現(xiàn)k+1次正面向上的概率,那么k的值為( )
(A)0 (B)1 (C)2 (D)3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com