已知函數(shù),其中x∈[0,3],
(1)求f(x)的最大值和最小值;
(2)若實數(shù)a滿足:f(x)-a≥0恒成立,求a的取值范圍.
【答案】分析:(1)設(shè)t=2x,利用換元法,將求已知函數(shù)的最值問題,轉(zhuǎn)化為求關(guān)于t的二次函數(shù)求最值問題,最后利用配方法求二次函數(shù)最值即可;(2)f(x)-a≥0恒成立,即a≤f(x)恒成立,只需a小于或等于f(x)的最小值,利用(1)的結(jié)論即可得a的取值范圍.
解答:解:(1)∵f(x)=(2x2-5•2x-6(0≤x≤3),
令t=2x,
∵0≤x≤3,
∴1≤t≤8
所以有:f(x)=(1≤t≤8)
所以:當(dāng)時,h(t)是減函數(shù);當(dāng)時,h(t)是增函數(shù);
,f(x)max=h(8)=18.
(2)∵f(x)-a≥0恒成立,即a≤f(x)恒成立,
所以:

點評:本題考查了換元法求函數(shù)的值域,配方法求二次函數(shù)最值,不等式恒成立問題的解法,通過換元實現(xiàn)函數(shù)轉(zhuǎn)化是解決本題的關(guān)鍵
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其中x∈(0,1]
(Ⅰ)當(dāng)a=數(shù)學(xué)公式時,求f(x)的最小值;
(Ⅱ)在定義域內(nèi),f(x)>0恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)已知函數(shù)(其中x≥1且x≠2).

   (1)求函數(shù)的反函數(shù) 

   (2)設(shè),求函數(shù)最小值及相應(yīng)的x值;

   (3)若不等式對于區(qū)間上的每一個x值都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省金華市東陽市南馬高中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中x∈R,A>0,ω>0)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個點為
(1)求f(x)的解析式;
(2)已知m∈R,p:關(guān)于x的不等式f(x)≥m2+2m-2對恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年黑龍江省哈爾濱九中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

已知函數(shù),其中x∈R,則下列結(jié)論中正確的是( )
A.f(x)是最小正周期為π的偶函數(shù)
B.f(x)的一條對稱軸是
C.f(x)的最大值為2
D.將函數(shù)的圖象左移得到函數(shù)f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市四校高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中x∈R).
求:
①函數(shù)f(x)的最小正周期;  
②函數(shù)f(x)的單調(diào)遞減區(qū)間;
③函數(shù)f(x)圖象的對稱軸.

查看答案和解析>>

同步練習(xí)冊答案