【題目】當自變量x在什么范圍取值時,下列函數(shù)的值等于0?大于0?小于0?

(1);

(2);

(3);

(4).

【答案】(1)等于0,;大于0,;小于0,.

(2)等于0,;大于0,;小于0,.

(3)等于0,;大于0,R;小于0,.

(4)等于0,;小于0,;大于0,.

【解析】

根據(jù)二次函數(shù)與一元二次方程的關系,結合二次函數(shù)的圖像與性質即可求解.

1)二次函數(shù)

由一元二次方程的求根公式可知

所以

結合二次函數(shù)的圖像與性質可知,開口向上,軸有兩個交點,所以

,函數(shù)值等于0;

,函數(shù)值大于0;

,函數(shù)值小于0.

2)二次函數(shù)

解一元二次方程可知

所以

結合二次函數(shù)的圖像與性質可知:

,函數(shù)值等于0;

,函數(shù)值大于0;

,函數(shù)值小于0.

3)二次函數(shù)

結合二次函數(shù)的圖像與性質可知:

當函數(shù)值等于0;

,函數(shù)值大于0;

當函數(shù)值小于0;

4)二次函數(shù)

結合二次函數(shù)的圖像與性質可知,開口向下,軸有一個交點,所以:

時函數(shù)值等于0;

,函數(shù)值大于0;

當函數(shù)值小于0;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:關于x的方程x2﹣ax+4=0有實根;命題q:關于x的函數(shù)y=2x2+ax+4[3,+∞)上是增函數(shù),若“pq”是真命題,“pq”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫坐標、縱坐標均為整數(shù)的點稱為整點,如果函數(shù)的圖象恰好通過個整點,則稱函數(shù)階整點函數(shù).有下列函數(shù):

;

其中是一階整點函數(shù)的是( )

A. ①②③④ B. ①③④ C. ①④ D. ④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,頂點到直線的距離為,橢圓內接四邊形(點在橢圓上)的對角線相交于點,且.

(1)求橢圓的標準方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,下列4個正方體中,點,,,分別為正方體的頂點或所在棱的中點,則在這4個正方體中,滿足直線平面的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內角所對的邊為,則下列命題正確的是_____

①若,則; ②若;

③若,則 ④若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內單調遞增,求的取值范圍;

(2)若且關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知滿足條件求:

(1)的最大值和最小值;

(2)的最大值和最小值;

(3)的最大值和最小值.

查看答案和解析>>

同步練習冊答案