已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線的焦點,且離心率等于,直線與橢圓C交于M,N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點F是否可以為的垂心?若可以,求出直線的方程;若不行,請說明理由.
(Ⅰ);(Ⅱ)。
解析試題分析:(Ⅰ)設(shè)橢圓C的方程:,
由題意知,
∴ 橢圓C的方程為:
(Ⅱ)假設(shè)存在這樣的直線,使得是的垂心,直線BF的斜率為,
從而直線的斜率為,設(shè)直線的方程為,
由,設(shè)
則,且,
,解得或
當時點B為直線與橢圓的一個交點,不合題意舍去;
當時,直線與橢圓相交兩點,且滿足題意;
綜上可知直線的方程為時,橢圓C的右焦點F是可以為的垂心 。
考點:本題考查橢圓的基本性質(zhì)、橢圓方程的求法以及直線與圓錐曲線的綜合問題。
點評:本題考查了橢圓方程的求法,以及存在性問題的做法,為圓錐曲線的常規(guī)題,應當掌握?疾榱藢W生綜合分析問題的能力,知識的遷移能力以及運算能力。解題時要認真審題,仔細分析。
科目:高中數(shù)學 來源: 題型:解答題
(本題10分)已知,動點滿足,設(shè)動點的軌跡是曲線,直線:與曲線交于兩點.(1)求曲線的方程;
(2)若,求實數(shù)的值;
(3)過點作直線與垂直,且直線與曲線交于兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知橢圓右焦點為,M為橢圓的上頂點,O為坐標原點,且是等腰直角三角形,(1)求橢圓的方程(2)過M分別作直線MA,MB,交橢圓于A,B兩點,設(shè)兩直線的斜率分別為,且,證明:直線AB過定點,并求定點的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)在平面直角坐標系中,已知點,過點作拋物線的切線,其切點分別為(其中)。
⑴ 求的值;
⑵ 若以點為圓心的圓與直線相切,求圓的面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知拋物線:的準線經(jīng)過雙曲線:的左焦點,若拋物線與雙曲線的一個交點是.
(1)求拋物線的方程; (2)求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知離心率為的橢圓過點,為坐標原點,平行于的直線交橢圓于不同的兩點。
(1)求橢圓的方程。
(2)證明:若直線的斜率分別為、,求證:+=0。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知焦點在軸上的雙曲線的兩條漸近線過坐標原點,且兩條漸近線
與以點 為圓心,1為半徑的圓相切,又知的一個焦點與關(guān)于直線
對稱.
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線的左支交于,兩點,另一直線經(jīng)過 及的中點,求直線在軸上的截距的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com