如圖,橢圓Q:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉(zhuǎn)動,并且交橢圓于A、B兩點,P是線段AB的中點.
(1)求點P的軌跡H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤
π
2
),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉(zhuǎn)動到什么位置時,三角形ABD的面積最大?
如圖,(1)設橢圓Q:
x2
a2
+
y2
b2
=1
(a>b>0)
上的點A(x1,y1)、B(x2,y2),又設P點坐標為P(x,y),
b2
x21
+a2
y21
=a2b2(1)
b2
x22
+a2
y22
=a2b2(2)

1°當AB不垂直x軸時,x1¹x2,
由(1)-(2)得
b2(x1-x2)2x+a2(y1-y2)2y=0
y1-y2
x1-x2
=-
b2x
a2y
=
y
x-c

∴b2x2+a2y2-b2cx=0(3)
2°當AB垂直于x軸時,點P即為點F,滿足方程(3)
故所求點P的軌跡方程為:b2x2+a2y2-b2cx=0

(2)因為,橢圓Q右準線l方程是x=
a2
c
,原點距l(xiāng)的距離為
a2
c

由于c2=a2-b2,a2=1+cosq+sinq,b2=sinq(0<q≤
π
2

a2
c
=
1+cosq+sinq
1+cosq
=2sin(
q
2
+
π
4

當q=
π
2
時,上式達到最大值.
此時a2=2,b2=1,c=1,D(2,0),|DF|=1
設橢圓Q:
x2
2
+y2=1
上的點A(x1,y1)、B(x2,y2),三角形ABD的面積
S=
1
2
|y1|+
1
2
|y2|=
1
2
|y1-y2|
設直線m的方程為x=ky+1,代入
x2
2
+y2=1
中,得(2+k2)y2+2ky-1=0
由韋達定理得y1+y2=-
2k
2+k2
,y1y2=-
1
2+k2
,
4S2=(y1-y22=(y1+y22-4y1y2=
8(k2+1)
(k2+2)2

令t=k2+131,
得4S2=
8t
(t+1)2
=
8
t+
1
t
+2
8
4
=2
,
當t=1,k=0時取等號.
因此,當直線m繞點F轉(zhuǎn)到垂直x軸位置時,三角形ABD的面積最大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l的方程為,且直線lx軸交于點M,圓x軸交于兩點(如圖).
(I)過M點的直線交圓于兩點,且圓孤恰為圓周的,求直線的方程;
(II)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;

(III)過M點的圓的切線交(II)中的一個橢圓于兩點,其中兩點在x軸上方,求線段CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線上一點到其焦點的距離為
(I)求的值;
(II)設拋物線上一點的橫坐標為,過的直線交于另一點,交軸于點,過點的垂線交于另一點.若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2;以F1,F(xiàn)2為焦點,離心率e=
1
2
的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動.
(1)當m=1時,求橢圓C2的方程;
(2)當△PF1F2的邊長恰好是三個連續(xù)的自然數(shù)時,求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
4
+
y2
3
=1
的左焦點為F,過F點的直線l交橢圓于A,B兩點,P為線段AB的中點,當△PFO的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓C:
x2
9
+
y2
4
=1
,斜率為k的直線l與橢圓相交于點M,N,點A是線段MN的中點,直線OA(O為坐標原點)的斜率是k′,那么kk′=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=4x,過點A(x0,0)(其中x0為常數(shù),且x0>0)作直線l交拋物線于P,Q(點P在第一象限);
(1)設點Q關于x軸的對稱點為D,直線DP交x軸于點B,求證:B為定點;
(2)若x0=1,M1,M2,M3為拋物線C上的三點,且△M1M2M3的重心為A,求線段M2M3所在直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面直角坐標系xoy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設點A(1,
1
2
).
(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,求線段PA的中點M的軌跡方程;
(3)過原點O的直線交橢圓于B,C兩點,求△ABC面積的最大值,并求此時直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的兩頂點為A1,A2,虛軸兩端點為B1,B2,兩焦點為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點分別為A,B,C,D.則:
(Ⅰ)雙曲線的離心率e=______;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值
S1
S2
=______.

查看答案和解析>>

同步練習冊答案