雙曲線C和橢圓4x2+y2=1有相同的焦點,它的一條漸近線為y=
2
x,則雙曲線C的方程為( 。
分析:求出橢圓的焦點坐標;據(jù)雙曲線的系數(shù)滿足c2=a2+b2;雙曲線的漸近線的方程與系數(shù)的系數(shù)的關系列出方程組,求出a,b;寫出雙曲線方程.
解答:解:橢圓方程為:4x2+y2=1,
其焦點坐標為(0,±
3
2
),
設雙曲線的方程為
y2
a2
-
x2
b2
=1

∵橢圓與雙曲線共同的焦點
∴a2+b2=
3
4

∵一條漸近線方程是y=
2
x,
a
b
=
2
,②
解①②組成的方程組得b=
1
2
,a=
2
2

即雙曲線方程為4x2-2y2=-1,
故選C.
點評:本題考查利用待定系數(shù)法求圓錐曲線的方程其中橢圓中三系數(shù)的關系是:a2=b2+c2;雙曲線中系數(shù)的關系是:c2=a2+b2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線C和橢圓4x2+y2=1有相同的焦點,它的一條漸近線為y=
2
x,則雙曲線C的方程為(  )
A.4x2-2y2=1B.2x2-y2=1C.4x2-2y2=-1D.2x2-y2=-1

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省寧波市高二(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

雙曲線C和橢圓4x2+y2=1有相同的焦點,它的一條漸近線為y=x,則雙曲線C的方程為( )
A.4x2-2y2=1
B.2x2-y2=1
C.4x2-2y2=-1
D.2x2-y2=-1

查看答案和解析>>

科目:高中數(shù)學 來源:2012年新人教A版高考數(shù)學一輪復習單元質(zhì)量評估08(第八章)(理科)(解析版) 題型:選擇題

雙曲線C和橢圓4x2+y2=1有相同的焦點,它的一條漸近線為y=x,則雙曲線C的方程為( )
A.4x2-2y2=1
B.2x2-y2=1
C.4x2-2y2=-1
D.2x2-y2=-1

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省廣州市仲元中學高三數(shù)學專題訓練:圓錐曲線方程(解析版) 題型:選擇題

雙曲線C和橢圓4x2+y2=1有相同的焦點,它的一條漸近線為y=x,則雙曲線C的方程為( )
A.4x2-2y2=1
B.2x2-y2=1
C.4x2-2y2=-1
D.2x2-y2=-1

查看答案和解析>>

同步練習冊答案