如圖,在直三棱柱(側(cè)棱和底面垂直的棱柱)中,,,,且滿足.

(1)求證:平面側(cè)面;
(2)求二面角的平面角的余弦值。
(1)詳見解析;(2)

試題分析:(1)可證得面側(cè)面(2)此問采用空間向量法較好。先建系,寫出個點坐標,再給出各向量的坐標,分別求面和面的法向量。先求得兩法向量所成角的余弦值,但兩法向量所成的角和二面角相等或互補,觀察可知此二面角為頓角,所以余弦值為負值。
試題解析:(1)證明: ,


          4分
(2)由(Ⅰ)知,以點為坐標原點,以所在的直線分
別為軸、軸、軸,可建立如圖所示的空間直角坐標系,

, , ,  
又由線段上分別有一點,
滿足,
所以E(1,2,0), F(0,1,1)        6分
 
的一個法向量       8分
此時面的一個法向量為,則。
設所求二面角平面角為,觀察可知為鈍角,
 。               12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面ABCD是平行四邊形,,,,設中點,點在線段上且

(1)求證:平面;
(2)設二面角的大小為,若,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直角梯形中,,點分別是的中點,點上,沿將梯形翻折,使平面平面.

(1)當最小時,求證:;
(2)當時,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,F(xiàn)A⊥CD.

(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;
(2)求二面角F­CD­A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1的棱長為1,O是底面A1B1C1D1的中心,則點O到平面ABC1D1的距離為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線l⊥平面α,直線l的方向向量為s,平面α的法向量為n,則下列結(jié)論正確的是(  )
A.s=(1,0,1),n=(1,0,-1)
B.s=(1,1,1),n=(1,1,-2)
C.s=(2,1,1),n=(-4,-2,-2)
D.s=(1,3,1),n=(2,0,-1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1的棱長為a,點M在AC1上且=,N為B1B的中點,則||為(  )
A.aB.aC.aD.a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F(xiàn)分別是棱AB,BC,CP的中點,AB=AC=1,PA=2,則直線PA與平面DEF所成角的正弦值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間直角坐標系中,點關于軸的對稱點的坐標為       (    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案