13.已知函數(shù)$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)若f(a)=3,求f(-a)的值.

分析 (1)利用分母不為0,求f(x)的定義域;
(2)利用奇函數(shù)的定義,判斷f(x)的奇偶性并證明;
(3)f(-a)=-f(a)=-3.

解答 解:(1)由2x-1≠0,可得x≠0,
∴f(x)的定義域是{x|x≠0};
(2)f(-x)=$\frac{{2}^{-x}+1}{{2}^{-x}-1}$=-f(x),∴f(x)是奇函數(shù);
(3)f(-a)=-f(a)=-3.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性、奇偶性,考查學(xué)生的計(jì)算能力,知識(shí)綜合性強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在調(diào)查中學(xué)生是否抽過煙的時(shí)候,給出兩個(gè)問題作答,無關(guān)緊要的問題是:“你的身份證號(hào)碼的尾數(shù)是奇數(shù)嗎?”敏感的問題是:“你抽過煙嗎?”然后要求被調(diào)查的中學(xué)生擲一枚質(zhì)地均勻的骰子一次,如果出現(xiàn)奇數(shù)點(diǎn),就回答第一個(gè)問題,否則回答第二個(gè)問題,由于回答哪一個(gè)問題只有被測(cè)試者自己知道,所以應(yīng)答者一般樂意如實(shí)地回答問題,如我們把這種方法用于300個(gè)被調(diào)查的中學(xué)生,得到80個(gè)“是”的回答,則這群人中抽過煙的百分率大約為13.33%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)={log_2}({x^2}+2)$,$\overrightarrow a=(m,1)$,$\overrightarrow b=(\frac{1}{2},\frac{m}{2})$,且m>0,若$f(\overrightarrow a•\overrightarrow b)≥f(|\overrightarrow a-\overrightarrow b|)$,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=2x3-3mx2+6x在區(qū)間(1,+∞)上為增函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l經(jīng)過點(diǎn)(0,-2),其傾斜角的大小是60°,則直線l與兩坐標(biāo)軸圍成三角形的面積S等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將兩顆骰子各擲一次,設(shè)事件A為“兩個(gè)點(diǎn)數(shù)相同”則概率P(A)等于( 。
A.$\frac{10}{11}$B.$\frac{5}{11}$C.$\frac{1}{6}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.運(yùn)行以下程序框圖,若輸入的$x∈[{-\frac{π}{2},\frac{π}{2}}]$,則輸出的y的范圍是( 。
A.[-1,1]B.[-1,0]C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是一個(gè)幾何體的三視圖,其中正視圖和側(cè)視圖都是腰長(zhǎng)為3,底邊長(zhǎng)為2的等腰三角形,則該幾何體的體積是( 。
A.$\frac{{2\sqrt{2}}}{3}π$B.$2\sqrt{2}π$C.$8\sqrt{2}π$D.$\frac{{8\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax+b(a,b∈R).
(Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函數(shù)f(x)的值域;
(ii)若函數(shù)f(x)的值域?yàn)閇0,1],求a,b的值;
(Ⅱ)當(dāng)|x|≥2時(shí),恒有f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求a2+b2的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案