【題目】某企業(yè)生產,兩種產品,根據市場調查與預測,產品的利潤與投資成正比,其關系如圖1,產品的利潤與投資的算術平方根成正比,其關系如圖2,(注:利潤與投資單位:萬元)
(1)分別將,兩種產品的利潤表示為投資的函數關系,并寫出它們的函數關系式;
(2)該企業(yè)已籌集到10萬元資金,全部投入到,兩種產品的生產,怎樣分配資金,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).
科目:高中數學 來源: 題型:
【題目】圓錐的軸截面是等腰直角三角形,底面半徑為1,點是圓心,過頂點的截面與底面所成的二面角大小是.
(1)求點到截面的距離;
(2)點為圓周上一點,且,是中點,求異面直線與所成角的大小.(結果用反三角函數值表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線: , : ,和兩點(0,1),(-1,0),給出如下結論:
①不論為何值時, 與都互相垂直;
②當變化時, 與分別經過定點A(0,1)和B(-1,0);
③不論為何值時, 與都關于直線對稱;
④如果與交于點,則的最大值是1;
其中,所有正確的結論的個數是( )
A. 1 B. 2 C. 3 D. 4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:與直線:,動直線過定點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于、兩點,點M是PQ的中點,直線與直線相交于點N.探索是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,二次函數的圖像與x軸交于和,與y軸交于C點,且是等腰三角形.
(1)求的解析式;
(2)在A、B之間的拋物線段上是否存在異于A、B的點D,使與的面積相等?若存在,求D點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數滿足:①對一切恒有;②對一切恒有;③當時,,且;④若對一切(其中),不等式恒成立.
(1)求的值;
(2)證明:函數是上的遞增函數;
(3)求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com